8 resultados para Crystal plasticity

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion and extracellular matrix (ECM) molecules play a significant role in neuronal plasticity both during development and in the adult. Plastic changes in which ECM components are implicated may underlie important nervous system functions, such as memory formation and learning. Heparin-binding growthassociated molecule (HB-GAM, also known as pleiotrophin), is an ECM protein involved in neurite outgrowth, axonal guidance and synaptogenesis during perinatal period. In the adult brain HB-GAM expression is restricted to the regions which display pronounced synaptic plasticity (e.g., hippocampal CA3-CA1 areas, cerebral cortex laminae II-IV, olfactory bulb). Expression of HB-GAM is regulated in an activity-dependent manner and is also induced in response to neuronal injury. In this work mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in hippocampal synaptic plasticity and in hippocampus-dependent behavioral tasks. Phenotypic analysis of HBGAM null mutants and mice overexpressing HB-GAM revealed that opposite genetic manipulations result in reverse changes in synaptic plasticity as well as behavior in the mutants. Electrophysiological recordings showed that mice lacking HB-GAM have an increased level of long-term potentiation (LTP) in the area CA1 of hippocampus and impaired spatial learning, whereas animals with enhanced level of HB-GAM expression have attenuated LTP, but outperformed their wild-type controls in spatial learning. It was also found that GABA(A) receptor-mediated synaptic transmission is altered in the transgenic mice overexpressing HB-GAM. The results suggest that these animals have accentuated hippocampal GABAergic inhibition, which may contribute to the altered glutamatergic synaptic plasticity. Structural studies of HB-GAM demonstrated that this protein belongs to the thrombospondin type I repeat (TSR) superfamily and contains two β-sheet domains connected by a flexible linker. It was found that didomain structure is necessary for biological activity of HB-GAM and electrophysiological phenotype displayed by the HB-GAM mutants. The individual domains displayed weaker binding to heparan sulfate and failed to promote neurite outgrowth as well as affect hippocampal LTP. Effects of HB-GAM on hippocampal synaptic plasticity are believed to be mediated by one of its (co-)receptor molecules, namely syndecan-3. In support of that, HB-GAM did not attenuate LTP in mice deficient in syndecan-3 as it did in wild-type controls. In addition, syndecan-3 knockout mice displayed electrophysiological and behavioral phenotype similar to that of HB-GAM knockouts (i.e. enhanced LTP and impaired learning in Morris water-maze). Thus HB-GAM and syndecan-3 are important modulators of synaptic plasticity in hippocampus and play a role in regulation of learning-related behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal plasticity is a well characterized phenomenon in the developing and adult brain. It refers to capasity of a single neuron to modify morphology, synaptic connections and activity. Neuronal connections and capacity for plastic events are compromised in several pathological disorders, such as major depression. In addition, neuronal atrophy has been reported in depressive patients. Neurotrophins are a group of secretory proteins functionally classified as neuronal survival factors. Neurotrophins, especially brain derived neurotrophic factor (BDNF), have also been associated with promoting neuronal plasticity in dysfunctional neuronal networks. Chronic antidepressant treatment increases plastic events including neurogenesis and arborization and branching of neurites in distinct brain areas, such as the hippocampus. One suggested mode of action is where the antidepressants elevate the synaptic levels of BDNF thus further activating several signaling cascades via trkB-receptor. In our studies we have tried to clarify the mechanisms of action for antidepressants and to resolve the role of BDNF in this process. We found that chronic antidepressant treatment increases amount of markers of neuronal plasticity in both hippocampus and in the medial prefrontal cortex, both of which are closely linked to the etiology of major depression. Secondary actions of antidepressants include rapid activation of the trkB receptor followed by a phosphorylation of transcription factor CREB. In addition, activation of CREB by phosphorylation appears responsible for the regulation of the expression of the BDNF gene. Using transgenic mice we found that BDNF-induced trkB-mediated signaling proved crucial for the behavioral effects of antidepressants in the forced swimming test and for the survival of newly-born neurons in the adult hippocampus. Antidepressants not only increased neurogenesis in the adult hippocampus but also elevated the turnover of hippocampal neurons. During these studies we also discovered that another trkB ligand, NT-4, is involved in morphine-mediated anti-nociception and tolerance. These results present a novel role for trkB-mediated signaling in plastic events present in the opioid system. This thesis evaluates neuronal plasticity and trkB as a target for future antidepressant treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) are secreted proteins which promote the survival of neurons, formation and maintenance of neuronal contacts and regulate synaptic plasticity. NTFs are also potential drug candidates for the treatment of neurodegenerative diseases. Parkinson’s disease (PD) is mainly caused by the degeneration of midbrain dopaminergic neurons. Current therapies for PD do not stop the neurodegeneration or repair the affected neurons. Thus, search of novel neurotrophic factors for midbrain dopaminergic neurons, which could also be used as therapeutic proteins, is highly warranted. In the present study, we identified and characterized a novel protein named conserved dopamine neurotrophic factor (CDNF), a homologous protein to mesencephalic astrocyte-derived neurotrophic factor (MANF). Others have shown that MANF supports the survival of embryonic midbrain dopaminergic neurons in vitro, and protects cultured cells against endoplasmic reticulum (ER) stress. CDNF and MANF form a novel evolutionary conserved protein family with characteristic eight conserved cysteine residues in their primary structure. The vertebrates have CDNF and MANF encoding genes, whereas the invertebrates, including Drosophila and Caenorhabditis have a single homologous CDNF/MANF gene. In this study we show that CDNF and MANF are secreted proteins. They are widely expressed in the mammalian brain, including the midbrain and striatum, and in several non-neuronal tissues. We expressed and purified recombinant human CDNF and MANF proteins, and tested the neurotrophic activity of CDNF on midbrain dopaminergic neurons using a 6-hydroxydopamine (6-OHDA) rat model of PD. In this model, a single intrastriatal injection of CDNF protected midbrain dopaminergic neurons and striatal dopaminergic fibers from the 6-OHDA toxicity. Importantly, an intrastriatal injection of CDNF also restored the functional activity of the nigrostriatal dopaminergic system when given after the striatal 6-OHDA lesion. Thus, our study shows that CDNF is a potential novel therapeutic protein for the treatment of PD. In order to elucidate the molecular mechanisms of CDNF and MANF activity, we resolved their crystal structure. CDNF and MANF proteins have two domains; an amino (N)-terminal saposin-like domain and a presumably unfolded carboxy (C)-terminal domain. The saposin-like domain, which is formed by five α-helices and stabilized by three intradomain disulphide bridges, may bind to lipids or membranes. The C-terminal domain contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus facilitate protein folding in the ER. Our studies suggest that CDNF and MANF are novel potential therapeutic proteins for the treatment of neurodegenerative diseases. Future studies will reveal the neurotrophic and cytoprotective mechanisms of CDNF and MANF in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.