12 resultados para Copper Toxicity

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physicochemical characterization of freshwater samples from Finland, Sweden, the Netherlands, and Spain revealed that water hardness and pH decreased and the quantity and quality of humic substances changed considerably in this geographical series from south to north. Since the ambient water chemistry may affect the availability of chemicals, the total aqueous concentration of a chemical may be insufficient to predict the bioconcentration, subsequent biological response, and thus risk. In addition, organisms could be affected directly by water quality characteristics. In this context the main objective of this thesis was to investigate the bioavailability of selected ecotoxicologically relevant chemicals (cadmium, benzo(a)pyrene, and pyrene) in various European surface waters and to show the importance of certain water chemistry characteristics in interpreting the bioavailability and toxicity results. The bioavailability of cadmium to Daphnia magna was examined in very soft humic lake water. Humic substances as natural ligands decreased the free and bioavailable proportion of cadmium in soft lake water. As a consequence the uptake rate and the acute toxicity decreased compared with the humic-free reference. When the hardness of humic lake water was artificially elevated, the acute toxicity of cadmium decreased, although the proportion of free cadmium increased. The decreased bioavailability of cadmium in hard water was a result of effective competition for uptake by the hardness cations, especially calcium ions. The protective role of humic substances and water hardness against cadmium toxicity was also observed in Lumbriculus variegatus, although D. magna was more sensitive to cadmium. The bioavailability of two polycyclic aromatic hydrocarbons (PAHs), pyrene and benzo(a)pyrene, was studied in European surface waters of varying water chemistry. Humic substances acted as complexing ligands with both PAHs, but the bioavailability of the more lipophilic benzo(a)pyrene to D. magna was affected more by humic substances than that of pyrene. In addition, not only the quantity of humic substances, but also their quality affected the bioavailability of benzo(a)pyrene. Nevertheless, the humic substances played a protective role in the photo-enhanced toxicity of pyrene under UV-B radiation. Water hardness had no effect on pyrene toxicity. Results indicate that the typical physicochemical characteristics of boreal freshwaters should be considered carefully in local and regional risk assessment of chemicals concerning the Fennoscandian region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis was to examine the ecophysiological responses of Scots pine (Pinus sylvestris L.), with an emphasis on the oxidative enzyme peroxidase and plant phenolics to environmental stresses like elevated levels of nickel (Ni) and copper (Cu), and herbivory. The effects of Ni and Cu were studied in a gradient survey at a sulphur dioxide contaminated site in the Kola Peninsula, and with experiments in which seedlings were exposed to Ni mist or to Ni and Cu amended into the soil. In addition, experimental Ni exposure was combined with disturbance of the natural lichen cover of the forest ground layer. Pine sawfly attack was simulated in the early season defoliation experiment, in which mature Scots pine were defoliated (100 %) during two successive years in a dry, nutrient-poor Scots pine stand. In addition, the effect of previous defoliation on the growth of sawfly (Diprion pini L.) larvae was studied. Apoplastic peroxidase activity was elevated in the needles of pine in a Ni- , Cu- and SO2- polluted environment, which indicated an increased oxidative stress. Increased foliar peroxidase activity due to Ni contamination was shown in the experiment, in which Ni was added as mist. No such response was found in peroxidase acitivity of the roots exposed to elevated Ni and/or Cu in the soil. Elevated Ni in the soil increased the concentration of foliar condensed tannins, which are able to bind heavy metals in the cells. Addition of low levels of Ni in the soil appeared to benefit pine seedlings, which was seen as promoted shoot growth and better condition of the roots. Wet Ni deposition of 2000 mg m-2 reduced growth and survival of pine seedlings, whereas deposition levels 200 mg m-2 or 20 mg m-2 caused no effects in a 2-y lasting experiment. The lichen mat on the forest floor did not act as an effective buffer against the adverse impacts of heavy metals on pine seedlings. However, some evidence was found indicating that soil microbes profited from the lichen mat. Artificial defoliation increased peroxidase activity in the Scots pine needles. In addition, defoliation decreased nitrogen, diamine putrescine and glucose concentrations in the needles and increased the concentrations of several phenolic compounds, starch and sucrose. Previous artificial defoliation led to poor growth of sawfly larvae reared on the pines, suggesting delayed induced resistance in Scots pine. However, there was no consistent relationship between inducibility (proportional increase in a compound following defoliation) and adverse effects on the growth of pine sawfly larvae. The observed inducible responses in needle phenolics due to previous defoliation thus appear to represent non-specific responses against sawflies.