3 resultados para Colectivos juveniles

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual movement is very versatile and inevitable in ecology. In this thesis, I investigate two kinds of movement body condition dependent dispersal and small-range foraging movements resulting in quasi-local competition and their causes and consequences on the individual, population and metapopulation level. Body condition dependent dispersal is a widely evident but barely understood phenomenon. In nature, diverse relationships between body condition and dispersal are observed. I develop the first models that study the evolution of dispersal strategies that depend on individual body condition. In a patchy environment where patches differ in environmental conditions, individuals born in rich (e.g. nutritious) patches are on average stronger than their conspecifics that are born in poorer patches. Body condition (strength) determines competitive ability such that stronger individuals win competition with higher probability than weak individuals. Individuals compete for patches such that kin competition selects for dispersal. I determine the evolutionarily stable strategy (ESS) for different ecological scenarios. My models offer explanations for both dispersal of strong individuals and dispersal of weak individuals. Moreover, I find that within-family dispersal behaviour is not always reflected on the population level. This supports the fact that no consistent pattern is detected in data on body condition dependent dispersal. It also encourages the refining of empirical investigations. Quasi-local competition defines interactions between adjacent populations where one population negatively affects the growth of the other population. I model a metapopulation in a homogeneous environment where adults of different subpopulations compete for resources by spending part of their foraging time in the neighbouring patches, while their juveniles only feed on the resource in their natal patch. I show that spatial patterns (different population densities in the patches) are stable only if one age class depletes the resource very much but mainly the other age group depends on it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild salmon stocks in the northern Baltic rivers became endangered in the second half of the 20th century, mainly due to recruitment overfishing. As a result, supplementary stocking was widely practised, and supplementation of the Tornionjoki salmon stock took place over a 25 year period until 2002. The stock has been closely monitored by electrofishing, smolt trapping, mark-recapture studies, catch samples and catch surveys. Background information on hatchery-reared stocked juveniles was also collected for this study. Bayesian statistics was applied to the data as this method offers the possibility of bringing prior information into the analysis and an advanced ability for incorporating uncertainty, and also provides probabilities for a multitude of hypotheses. Substantial divergences between reared and wild Tornionjoki salmon were identified in both demographic and phenological characteristics. The divergences tended to be larger the longer the duration spent in hatchery and the more favourable the hatchery conditions were for fast growth. Differences in environment likely induced most of the divergences, but selection of brood fish might have resulted in genotypic divergence in maturation age of reared salmon. Survival of stocked 1-year old juveniles to smolt varied from about 10% to about 25%. Stocking on the lower reach of the river seemed to decrease survival, and the negative effect of stocking volume on survival raises the concern of possible similar effects on the extant wild population. Post-smolt survival of wild Tornionjoki smolts was on average two times higher than that of smolts stocked as parr and 2.5 times higher than that of stocked smolts. Smolts of different groups showed synchronous variation and similar long-term survival trends. Both groups of reared salmon were more vulnerable to offshore driftnet and coastal trapnet fishing than wild salmon. Average survival from smolt to spawners of wild salmon was 2.8 times higher than that of salmon stocked as parr and 3.3 times higher than that of salmon stocked as smolts. Wild salmon and salmon stocked as parr were found to have similar lifetime survival rates, while stocked smolts have a lifetime survival rate over 4 times higher than the two other groups. If eggs are collected from the wild brood fish, stocking parr would therefore not be a sensible option. Stocking smolts instead would create a net benefit in terms of the number of spawners, but this strategy has serious drawbacks and risks associated with the larger phenotypic and demographic divergences from wild salmon. Supplementation was shown not to be the key factor behind the recovery of the Tornionjoki and other northern Baltic salmon stocks. Instead, a combination of restrictions in the sea fishery and simultaneous occurrence of favourable natural conditions for survival were the main reasons for the revival in the 1990 s. This study questions the effectiveness of supplementation as a conservation management tool. The benefits of supplementation seem at best limited. Relatively high occurrences of reared fish in catches may generate false optimism concerning the effects of supplementation. Supplementation may lead to genetic risks due to problems in brood fish collection and artificial rearing with relaxed natural selection and domestication. Appropriate management of fisheries is the main alternative to supplementation, without which all other efforts for long-term maintenance of a healthy fish resource fail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.