66 resultados para Cholesterol efflux

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases, which presently are considered inflammatory diseases, affect millions of people worldwide. Chronic infections may contribute to the systemic inflammation suggested to increase the risk for cardiovascular diseases. Such chronic infections are periodontitis and Chlamydia pneumoniae infection. They are highly prevalent as approximately 10% of adult population and 30% of people over 50 years old are affected by severe periodontitis and 70-80% of elderly people are seropositive for C. pneumoniae. Our general aim was to investigate the role of infection and inflammation in atherosclerosis both in animal and human studies. We aimed to determine how the two pathogens alter the atherosclerosis-associated parameters, and how they affect the liver inflammation and lipid composition. Furthermore, we evaluated the association between matrix metalloproteinase-8 (MMP-8), a proteinase playing a major role in inflammation, and the future cardiovascular diseases (CVD) events in a population-based cohort. For the animal experiments, we used atherosclerosis-susceptible apolipoprotein E deficient (apoE-/-) mice. They were kept in germ free conditions and fed with a normal chow diet. The bacteria were administered either intravenously (A. actinomycetemcomitans) or intranasally (C. pneumoniae). Several factors were determined from serum as well as from aortic and hepatic tissues. We also determined how cholesterol efflux, a major event in the removal of excess cholesterol from the tissues, and endothelial function were affected by these pathogens. In the human study, serum MMP-8 and its tissue inhibitor (TIMP-1) concentrations were measured and their associations during the follow-up time of 10 years with CVD events were determined. An infection with A. actinomycetemcomitans increased concentrations of inflammatory mediators, MMP production, and cholesterol deposit in macrophages, decreased lipoprotein particle size, and induced liver inflammation. C. pneumoniae infection also elicited an inflammatory response and endothelial dysfunction, as well as induced liver inflammation, microvesicular appearance and altered fatty acid profile. In the population-based cohort, men with increased serum MMP-8 concentration together with subclinical atherosclerosis (carotid artery intima media thickness > 1mm) had a three-fold increased risk for CVD death during the follow-up. The results show that infections with A. actinomycetemcomitans and C. pneumoniae induce proatherogenic changes, as well as affect the liver. These data therefore support the concept that common infections have systemic effects and could be considered as cardiovascular risk factors. Furthermore, our data indicate that, as an independent predictor of fatal CVD event, serum MMP-8 could have a clinical significance in diagnosing cardiovascular diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: