2 resultados para Casts

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class II division 1 malocclusion occurs in 3.5 to 13 percent of 7 12 year-old children. It is the most common reason for orthodontic treatment in Finland. Correction is most commonly performed using headgear treatment. The aim of this study was to investigate the effects of cervical headgear treatment on dentition, facial skeletal and soft tissue growth, and upper airway structure, in children. 65 schoolchildren, 36 boys and 29 girls were studied. At the onset of treatment a mean age was 9.3 (range 6.6 12.4) years. All the children were consequently referred to an orthodontist because of Class II division 1 malocclusion. The included children had protrusive maxilla and an overjet of more than 2mm (3 to 11 mm). The children were treated with a Kloehn-type cervical headgear as the only appliance until Class I first molar relationships were achieved. The essential features of the headgear were cervical strong pulling forces, a long upward bent outer bow, and an expanded inner bow. Dental casts and lateral and posteroanterior cephalograms were taken before and after the treatment. The results were compared to a historical, cross-sectional Finnish cohort or to historical, age- and sex-matched normal Class I controls. The Class I first molar relationships were achieved in all the treated children. The mean treatment time was 1.7 (range 0.3-3.1) years. Phase 2 treatments were needed in 52% of the children, most often because of excess overjet or overbite. The treatment decreased maxillary protrusion by inhibiting alveolar forward growth, while the rest of the maxilla and mandible followed normal growth. The palate rotated anteriorly downward. The expansion of the inner bow of the headgear induced widening of the maxilla, nasal cavity, and the upper and lower dental arches. Class II malocclusion was associated with narrower oro- and hypopharyngeal space than in the Class I normal controls. The treatment increased the retropalatal airway space, while the rest of the airway remained unaffected. The facial profile improved esthetically, while the facial convexity decreased. Facial soft tissues masked the facial skeletal convexity, and the soft tissue changes were smaller than skeletal changes. In conclusion, the headgear treatment with the expanded inner bow may be used as an easy and simple method for Class II correction in growing children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.