7 resultados para Cartesian

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epistemological foundationalism has for centuries attempted to unify all scientific inquiry into the context of one grand science, the first philosophy. One of the most important tasks of this tradition has been to ground all knowledge on absolutely certain foundations. In this master s thesis I ask the following question: To what extent and under what conditions is it possible to achieve absolute certainty in the sense of the attempts of Cartesian foundationalism? By examining how the 20th century philosophers, Edmund Husserl (1859-1938), Hannah Arendt (1906-1975) and Maurice Merleau-Ponty (1908-1961) interpret the epistemological methodology of René Descartes, I claim that the Cartesian achievement of absolute certainty rests on the implicit presupposition of an epistemologically prior form of faith in the world and trust (pistis) in other conscious beings. I show that knowledge is possible only within the context of a common world that is inhabited by several conscious beings that share a common linguistic system. This threefold element is shown to be the bedrock condition for any kind of philosophical inquiry. The main literature sources for this thesis are The Life of the Mind by Hannah Arendt, Le Visible et l invisible by Maurice Merleau-Ponty, Meditationes de Prima Philosophiae by René Descartes and Erfahrung und Urteil by Edmund Husserl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study approaches two modern novels using the conceptual frame of Lacanian psychoanalysis, especially the Lacanian notion of subject. The novels can be described as subversive “Bildungsromans” (development novels) highly influenced by psychoanalytic thought. Anaïs Nin’s (1903—1977) “poetic novel” House of Incest (1936) is a story of sexual and artistic awakening while Hélène Cixous’s (b. 1937) first novel Dedans (1969) depicts the growth of a little girl whose father dies. Both are first novels and first person narratives. Concentrating in the narrator’s internal life the novels writings break with the realistic conventions of narrative, bringing forth the themes of anguish, alienation from the world and escape into the prison like realm of the self. The study follows roughly the Lacanian process of becoming a subject. Each chapter opens up with a quick introduction to the Lacanian concepts used in the following part that analyses the novels. The study can thus also be used as a brief introduction to Lacanian theory in finnish. The psychoanalytic narrative/story of the birth of the subject and the novels stories can be seen as mirroring each other. The method of the study is thus based on a dialogue between the theoretical concepts and the analyses. Novels are being approached as texts that break with the Cartesian notion of an autonomous subject making room for a dialectics of self and other, for a movement in which the “I” builds an identity mirroring itself with others. While both of the novels recount the birth of a character called I, they also have a first person narrator apart from the character “I”. Having constituted the self’s identity, the narrator finds from inside of the self also an other or “you” – this discovery is the final clue to the coffin of the autonomous self. From the Lacanian perspective man’s great Other is the order of language, Symbolic, which constitutes the individual, the speaking subject. Using this perspective the novels are interpreted as describing the process of becoming a subject of the Symbolic; subjected to Symbolic order. This “birth process” happens in particular in the Imaginary register, where the self’s identity is built. In the Imaginary or Mirror phase the “I” mirrors himself with different others (e.g. with his mirror image and the family members, the surrounding others) learning to see his body and his selfhood both as familiar and strange, other. In the Imaginary phase the novels’ characters are also trying to deal with the opposite realm of the Symcolic, the Real. The Lacanian Real is not the reality “before words” but a reality left over from the Symbolic, aside of it but constituted by the Symbolic, to be deducted only from within it. In the novels the Real is experienced as a womblike state where the self is immersed in the other’s body. The process of coming a subject of the Symbolic is depicted also as a process of renouncing the “dream of the womb”, which, if realized, could only mean the non-existence of the subject, i.e. death. The study concentrates on analysing the novels’ writing, where meanings are constantly changing: “I” becomes you, the father becomes a mother, inside becomes outside. This technique enables also the deconstruction of certain opposing notions in the novels. The Lacanian point of view exposes language as a constantly moving universe where the subject has no more stability than the momentary meanings language creates. The self’s identity depicted in the novels is a Lacanian fixed identity, whose growth is necessary but opposes the flux imminent to the Symbolic. The anguish experienced in the novels, in the “house of incest” or “inside”, is due to clinging on the unchanging “I”. However, the writing of the novels shows how the meaning of the “I” changes constantly and the fixity thus becomes movement. This way House of Incest and Dedans, despite their pessimistic stories, manage to create an image of a new, moving subject.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many problems in analysis have been solved using the theory of Hodge structures. P. Deligne started to treat these structures in a categorical way. Following him, we introduce the categories of mixed real and complex Hodge structures. Category of mixed Hodge structures over the field of real or complex numbers is a rigid abelian tensor category, and in fact, a neutral Tannakian category. Therefore it is equivalent to the category of representations of an affine group scheme. The direct sums of pure Hodge structures of different weights over real or complex numbers can be realized as a representation of the torus group, whose complex points is the Cartesian product of two punctured complex planes. Mixed Hodge structures turn out to consist of information of a direct sum of pure Hodge structures of different weights and a nilpotent automorphism. Therefore mixed Hodge structures correspond to the representations of certain semidirect product of a nilpotent group and the torus group acting on it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an earlier study, we reported on the excitation of large-scale vortices in Cartesian hydrodynamical convection models subject to rapid enough rotation. In that study, the conditions for the onset of the instability were investigated in terms of the Reynolds (Re) and Coriolis (Co) numbers in models located at the stellar North pole. In this study, we extend our investigation to varying domain sizes, increasing stratification, and place the box at different latitudes. The effect of the increasing box size is to increase the sizes of the generated structures, so that the principal vortex always fills roughly half of the computational domain. The instability becomes stronger in the sense that the temperature anomaly and change in the radial velocity are observed to be enhanced. The model with the smallest box size is found to be stable against the instability, suggesting that a sufficient scale separation between the convective eddies and the scale of the domain is required for the instability to work. The instability can be seen upto the colatitude of 30 degrees, above which value the flow becomes dominated by other types of mean flows. The instability can also be seen in a model with larger stratification. Unlike the weakly stratified cases, the temperature anomaly caused by the vortex structures is seen to depend on depth.