12 resultados para COPULATORY MECHANISM

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been only recently realized that sexual selection does not end at copulation but that post-copulatory processes are often important in determining the fitness of individuals. In this thesis, I experimentally studied both pre- and post-copulatory sexual selection in the least killifish, Heterandria formosa. I found that this species suffers from severe inbreeding depression in male reproductive behaviour, offspring viability and offspring maturation times. Neither sex showed pre-copulatory inbreeding avoidance but when females mated with their brothers, less sperm were retrieved from their reproductive system compared to the situation when females mated with unrelated males. Whether the difference in sperm numbers is due to female or male effect could not be resolved. Based on theory, females should be more eager to avoid inbreeding than males in this species, because females invest more in their offspring than males do. Inbreeding seems to be an important part of this species biology and the severe inbreeding depression has most likely selected for the evolution of the post-copulatory inbreeding avoidance mechanism that I found. In addition, I studied the effects of polyandry on female reproductive success. When females mated with more than one male, they were more likely to get pregnant. However, I also found a cost of polyandry. The offspring of females mated to four males took longer to reach sexual maturity compared to the offspring of monandrous females. This cost may be explained by parent-offspring conflict over maternal resource allocation. In another experiment, in which within-brood relatedness was manipulated, offspring sizes decreased over time when within-brood relatedness was low. This result is partly in accordance with the kinship theory of genomic imprinting. When relatedness decreases, offspring are expected to be less co-operative and demand fewer resources from their mother, which leads to impaired development. In the last chapter of my thesis, I show that H. formosa males do not prefer large females as in other Poeciliidae species. I suggest that males view smaller females as more profitable mates because those are more likely virgin. In conclusion, I found both pre- and post-copulatory sexual selection to be important factors in determining reproductive success in H. formosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular motors are proteins that convert chemical energy into mechanical work. The viral packaging ATPase P4 is a hexameric molecular motor that translocates RNA into preformed viral capsids. P4 belongs to the ubiquitous class of hexameric helicases. Although its structure is known, the mechanism of RNA translocation remains elusive. Here we present a detailed kinetic study of nucleotide binding, hydrolysis, and product release by P4. We propose a stochastic-sequential cooperative model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive. Further, we use hydrogen/deuterium exchange detected by high resolution mass spectrometry to visualize P4 conformational dynamics during the catalytic cycle. Concerted changes of exchange kinetics reveal a cooperative unit that dynamically links ATP binding sites and the central RNA binding channel. The cooperative unit is compatible with the structure-based model in which translocation is effected by conformational changes of a limited protein region. Deuterium labeling also discloses the transition state associated with RNA loading which proceeds via opening of the hexameric ring. Hydrogen/deuterium exchange is further used to delineate the interactions of the P4 hexamer with the viral procapsid. P4 associates with the procapsid via its C-terminal face. The interactions stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading. Finally, we use single molecule techniques to characterize P4 translocation along RNA. While the P4 hexamer encloses RNA topologically within the central channel, it diffuses randomly along the RNA. In the presence of ATP, unidirectional net movement is discernible in addition to the stochastic motion. The diffusion is hindered by activation energy barriers that depend on the nucleotide binding state. The results suggest that P4 employs an electrostatic clutch instead of cycling through stable, discrete, RNA binding states during translocation. Conformational changes coupled to ATP hydrolysis modify the electrostatic potential inside the central channel, which in turn biases RNA motion in one direction. Implications of the P4 model for other hexameric molecular motors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic wasps are one of the largest insect groups and their life histories are remarkably variable. Common to all parasitic wasps is that they kill their hosts, which are usually beetles, butterflies and sometimes spiders. Hosts are often at a larval or pupal stage and live in concealed conditions, such as in plant tissue. Parasitic wasps have two main ways of finding their host. 1) They can detect chemical compounds emitted by damaged plant material or released by larvae living in plant tissue, and 2) detect the larvae by sound vibrations. Even though pupae are immobile and silent, and therefore do not cause vibration, parasitoids have, however, adapted to find passive developmental stages by producing vibration themselves by knocking the substrate with their antennae, and then detecting the echoes with their legs. This echolocation allows a parasitoid to locate its potential hosts that are deeply buried in wood. This study focuses on the relationships of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) and related taxa, and the evolution of host location mechanism. There are no earlier studies of the phylogeny of the Cryptinae, and the position of related taxa are unclear. According to the earlier classification, which is entirely intuitional, the Cryptinae is divided into three tribes: Cryptini, Hemigasterini and Phygadeuontini. Further, these tribes are subdiveded into numerous subtribes. This work, based on molecular characters, shows that the cryptine tribes Cryptini, Phygadeuon¬tini and Hemigasterini come out largely as monophyletic groups, thus agreeing with the earlier classification. The earlier subtribal classification had no support. In addition, it is shown that modified antennal structures are associated with host usage of wood-boring coleopteran hosts. The cryptines have a clear modification series on their antennal tips from a simply tip to a hammer-like structure. The species with strongly modified antennae belong mostly to the tribe Cryptini and they utilise wood-boring beetles as hosts. Also, field observations on insect behaviour support this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to study the seismic tomography structure of the earth s crust together with earthquake distribution and mechanism beneath the central Fennoscandian Shield, mainly in southern and central Finland. The earthquake foci and some fault plane solutions are correlated with 3-D images of the velocity tomography. The results are discussed in relation to the stress field of the Shield and with other geophysical, e.g. geomagnetic, gravimetric, tectonic, and anisotropy studies of the Shield. The earthquake data of the Fennoscandian Shield has been extracted from the Nordic earthquake parameter data base which was founded at the time of inception of the earthquake catalogue for northern Europe. Eight earlier earthquake source mechanisms are included in a pilot study on creating a novel technique for calculating an earthquake fault plane solution. Altogether, eleven source mechanisms of shallow, weak earthquakes are related in the 3-D tomography model to trace stresses of the crust in southern and central Finland. The earthquakes in the eastern part of the Fennoscandian Shield represent low-active, intraplate seismicity. Earthquake mechanisms with NW-SE oriented horizontal compression confirm that the dominant stress field originates from the ridge-push force in the North Atlantic Ocean. Earthquakes accumulate in coastal areas, in intersections of tectonic lineaments, in main fault zones or are bordered by fault lines. The majority of Fennoscandian earthquakes concentrate on the south-western Shield in southern Norway and Sweden. Onwards, epicentres spread via the ridge of the Shield along the west-coast of the Gulf of Bothnia northwards along the Tornio River - Finnmark fault system to the Barents Sea, and branch out north-eastwards via the Kuusamo region to the White Sea Kola Peninsula faults. The local seismic tomographic method was applied to find the terrane distribution within the central parts of the Shield the Svecofennian Orogen. From 300 local explosions a total of 19765 crustal Pg- and Sg-wave arrival times were inverted to create independent 3-D Vp and Vs tomographic models, from which the Vp/Vs ratio was calculated. The 3-D structure of the crust is presented as a P-wave and for the first time as an S-wave velocity model, and also as a Vp/Vs-ratio model of the SVEKALAPKO area that covers 700x800 km2 in southern and central Finland. Also, some P-wave Moho-reflection data was interpolated to image the relief of the crust-mantle boundary (i.e. Moho). In the tomography model, the seismic velocities vary smoothly. The lateral variations are larger for Vp (dVp =0.7 km/s) than for Vs (dVs =0.4 km/s). The Vp/Vs ratio varies spatially more distinctly than P- and S-wave velocities, usually from 1.70 to 1.74 in the upper crust and from 1.72 to 1.78 in the lower crust. Schist belts and their continuations at depth are associated with lower velocities and lower Vp/Vs ratios than in the granitoid areas. The tomography modelling suggests that the Svecofennian Orogen was accreted from crustal blocks ranging in size from 100x100 km2 to 200x200 km2 in cross-sectional area. The intervening sedimentary belts have ca. 0.2 km/s lower P- and S-wave velocities and ca. 0.04 lower Vp/Vs ratios. Thus, the tomographic model supports the concept that the thick Svecofennian crust was accreted from several crustal terranes, some hidden, and that the crust was later modified by intra- and underplating. In conclusion, as a novel approach the earthquake focal mechanism and focal depth distribution is discussed in relation to the 3-D tomography model. The schist belts and the transformation zones between the high- and low-velocity anomaly blocks are characterized by deeper earthquakes than the granitoid areas where shallow events dominate. Although only a few focal mechanisms were solved for southern Finland, there is a trend towards strike-slip and oblique strike-slip movements inside schist areas. The normal dip-slip type earthquakes are typical in the seismically active Kuusamo district in the NE edge of the SVEKALAPKO area, where the Archean crust is ca. 15-20 km thinner than the Proterozoic Svecofennian crust. Two near vertical dip-slip mechanism earthquakes occurred in the NE-SW junction between the Central Finland Granitoid Complex and the Vyborg rapakivi batholith, where high Vp/Vs-ratio deep-set intrusion splits the southern Finland schist belt into two parts in the tomography model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is challenging. Consequently, many of these interactions have remained unrecognised for many years. The concomitant use of the fibrate-class lipid-lowering agent gemfibrozil increases the concentrations of some drugs and their effects markedly. Even fatal cases of rhabdomyolysis occurred in patients administering gemfibrozil and cerivastatin concomitantly. One of the main mechanisms behind this effect is the mechanism-based inhibition of the cytochrome P450 (CYP) 2C8 enzyme by a glucuronide metabolite of gemfibrozil leading to increased cerivastatin concentrations. Although the clinical use of gemfibrozil has clearly decreased during recent years, gemfibrozil is still needed in some special cases. To enable safe use of gemfibrozil concomitantly with other drugs, information concerning the time and dose relationships of CYP2C8 inhibition by gemfibrozil should be known. This work was carried out as four in vivo clinical drug-drug interaction studies to examine the time and dose relationships of the mechanism-based inhibitory effect of gemfibrozil on CYP2C8. The oral antidiabetic drug repaglinide was used as a probe drug for measuring CYP2C8 activity in healthy volunteers. In this work, mechanism-based inhibition of the CYP2C8 enzyme by gemfibrozil was found to occur rapidly in humans. The inhibitory effect developed to its maximum already when repaglinide was given 1-3 h after gemfibrozil intake. In addition, the inhibition was shown to abate slowly. A full recovery of CYP2C8 activity, as measured by repaglinide metabolism, was achieved 96 h after cessation of gemfibrozil treatment. The dose-dependency of the mechanism-based inhibition of CYP2C8 by gemfibrozil was shown for the first time in this work. CYP2C8 activity was halved by a single 30 mg dose of gemfibrozil or by twice daily administration of less than 30 mg of gemfibrozil. Furthermore, CYP2C8 activity was decreased over 90% by a single dose of 900 mg gemfibrozil or twice daily dosing of approximately 100 mg gemfibrozil. In addition, with the application of physiological models to the data obtained in the dose-dependency studies, the major role of mechanism-based inhibition of CYP2C8 in the interaction between gemfibrozil and repaglinide was confirmed. The results of this work enhance the proper use of gemfibrozil and the safety of patients. The information related to time-dependency of CYP2C8 inhibition by gemfibrozil may also give new insights in order to improve the IVIVE of the drug-drug interactions of new chemical entities. The information obtained by this work may be utilised also in the design of clinical drug-drug interaction studies in the future.