5 resultados para Bn - Maximal Operator
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.
Resumo:
Tools known as maximal functions are frequently used in harmonic analysis when studying local behaviour of functions. Typically they measure the suprema of local averages of non-negative functions. It is essential that the size (more precisely, the L^p-norm) of the maximal function is comparable to the size of the original function. When dealing with families of operators between Banach spaces we are often forced to replace the uniform bound with the larger R-bound. Hence such a replacement is also needed in the maximal function for functions taking values in spaces of operators. More specifically, the suprema of norms of local averages (i.e. their uniform bound in the operator norm) has to be replaced by their R-bound. This procedure gives us the Rademacher maximal function, which was introduced by Hytönen, McIntosh and Portal in order to prove a certain vector-valued Carleson's embedding theorem. They noticed that the sizes of an operator-valued function and its Rademacher maximal function are comparable for many common range spaces, but not for all. Certain requirements on the type and cotype of the spaces involved are necessary for this comparability, henceforth referred to as the “RMF-property”. It was shown, that other objects and parameters appearing in the definition, such as the domain of functions and the exponent p of the norm, make no difference to this. After a short introduction to randomized norms and geometry in Banach spaces we study the Rademacher maximal function on Euclidean spaces. The requirements on the type and cotype are considered, providing examples of spaces without RMF. L^p-spaces are shown to have RMF not only for p greater or equal to 2 (when it is trivial) but also for 1 < p < 2. A dyadic version of Carleson's embedding theorem is proven for scalar- and operator-valued functions. As the analysis with dyadic cubes can be generalized to filtrations on sigma-finite measure spaces, we consider the Rademacher maximal function in this case as well. It turns out that the RMF-property is independent of the filtration and the underlying measure space and that it is enough to consider very simple ones known as Haar filtrations. Scalar- and operator-valued analogues of Carleson's embedding theorem are also provided. With the RMF-property proven independent of the underlying measure space, we can use probabilistic notions and formulate it for martingales. Following a similar result for UMD-spaces, a weak type inequality is shown to be (necessary and) sufficient for the RMF-property. The RMF-property is also studied using concave functions giving yet another proof of its independence from various parameters.
Resumo:
Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.
Resumo:
Models of Maximal Flavor Violation (MxFV) in elementary particle physics may contain at least one new scalar SU$(2)$ doublet field $\Phi_{FV} = (\eta^0,\eta^+)$ that couples the first and third generation quarks ($q_1,q_3$) via a Lagrangian term $\mathcal{L}_{FV} = \xi_{13} \Phi_{FV} q_1 q_3$. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb$^{-1}$ collected by the CDF II detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV are analyzed for evidence of the MxFV signature. For a neutral scalar $\eta^0$ with $m_{\eta^0} = 200$ GeV/$c^2$ and coupling $\xi_{13}=1$, $\sim$ 11 signal events are expected over a background of $2.1 \pm 1.8$ events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling $\xi_{13}$ for $m_{\eta^0} = 180-300$ GeV/$c^2$.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.