11 resultados para Biochemical and Biomolecular Engineering

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potato virus A (PVA) genome linked protein (VPg) is a multifunctional protein that takes part in vital infection cycle events such as replication and movement of the virus from cell to cell. VPg is attached to the 5´ end of the genome and is carried in the tip structure of the filamentous virus particle. VPg is also the last protein to be cleaved from the polyprotein. VPg interacts with several viral and host proteins and is phosphorylated at several positions. These features indicate a central role in virus epidemiology and a requirement for an efficient but flexible mechanism for switching between different functions. -- This study examines some of the key VPg functions in more detail. Mutations in the positively charged region from Ala38 to Lys44 affected the NTP binding, uridylylation, and in vitro translation inhibition activities of VPg, whereas in vivo translation inhibition was not affected. Some of the data generated in this study implicated the structural flexibility of the protein in functional activities. VPg lacks a rigid structure, which could allow it to adapt conformationally to different functions as needed. A major finding of this study is that PVA VPg belongs to the class of ´intrinsically disordered proteins´ (IDPs). IDPs are a novel protein class that has helped to explain the observed lack of structure. The existence of IDPs clearly shows that proteins can be functional and adapt a native fold without a rigid structure. Evidence for the intrinsic disorder of VPg was provided by CD spectroscopy, NMR, fluorescence spectroscopy, bioinformatic analysis, and limited proteolytic digestion. The structure of VPg resembles that of a molten globule-type protein and has a hydrophobic core domain. Approximately 50% of the protein is disordered and an α-helical stabilization of these regions has been hypothesized. Surprisingly, VPg structure was stabilized in the presence of anionic lipid vesicles. The stabilization was accompanied by a change in VPg structure and major morphological modifications of the vesicles, including a pronounced increase in the size and appearance of pore or plaque like formations on the vesicle surface. The most likely scenario seems to be an α-helical stabilization of VPg which induces formation of a pore or channel-like structure on the vesicle surface. The size increase is probably due to fusion or swelling of the vesicles. The latter hypothesis is supported by the evident disruption of the vesicles after prolonged incubation with VPg. A model describing the results is presented and discussed in relation to other known properties of the protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal aim of this study was to examine diseases characterized by inflammatory injury, especially human arthritides and periodontitis, with specific interest to final effector enzymes of tissue destruction and address the possible future tools to prevent permanent tissue loss. We used biochemical and immunological methods applied to synovial tissue samples, samples of synovial fluid, and samples of peripheral blood. In Study IV, we used established clinical inflammatory injury indicator probing pocket depth and used it to derive a new clinical measure of systemic burden, periodontal inflammatory burden index. In study I, we showed a difference in the effector enzymes of peripheral blood leukocytes and leukocytes from inflamed synovial fluid of rheumatoid arthritis and reactive arthritis patients. The effector enzyme activities were higher in synovial fluid than in peripheral blood. In study II, we showed the presence of collagenase-3 in rheumatoid synovial tissue samples, relative resistance of the enzyme to inhibition in vitro and developed an electrophoretic method for detection of collagenase-3 in presence of collagenase-1. In study III, we carried out an open label study of doxycycline treatment of 12 RA patients. During the treatment period, we observed an improvement in several of the biochemical and psychosocial variables used to assess the status of the patients. In study IV, we showed a clearly lower level of periodontal inflammatory injury in chronic periodontitis patients referred for periodontal treatment. In this cross-sectional pilot study, we showed lower levels of inflammatory injury in periodontitis patients using statin than in those not receiving statin treatment. The difference was of same magnitude in patients using simvastatin or atorvastatin. The weighted index of inflammatory burden, PIBI, which emphasizes the burden imposed by the deepest pathological pockets on the system showed values consistent with a wider scale to ease future studies on the inflammatory burden associated with periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) is an imaging technique in which radioactive positron-emitting tracers are used to study biochemical and physiological functions in humans and in animal experiments. The use of PET imaging has increased rapidly in recent years, as have special requirements in the fields of neurology and oncology for the development of syntheses for new, more specific and selective radiotracers. Synthesis development and automation are necessary when high amounts of radioactivity are needed for multiple PET studies. In addition, preclinical studies using experimental animal models are necessary for evaluating the suitability of new PET tracers for humans. For purification and analysing the labelled end-product, an effective radioanalytical method combined with an optimal radioactivity detection technique is of great importance. In this study, a fluorine-18 labelling synthesis method for two tracers was developed and optimized, and the usefulness of these tracers for possible prospective human studies was evaluated. N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl)nortropane ([18F]β-CFT-FP) is a candidate PET tracer for the dopamine transporter (DAT), and 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO) is a well-known hypoxia marker for hypoxic but viable cells in tumours. The methodological aim of this thesis was to evaluate the status of thin-layer chromatography (TLC) combined with proper radioactivity detection measurement systems as a radioanalytical method. Three different detection methods of radioactivity were compared: radioactivity scanning, film autoradiography, and digital photostimulated luminescence (PSL) autoradiography. The fluorine-18 labelling synthesis for [18F]β-CFT-FP was developed and carbon-11 labelled [11C]β-CFT-FP was used to study the specificity of β-CFT-FP for the DAT sites in human post-mortem brain slices. These in vitro studies showed that β-CFT-FP binds to the caudate-putamen, an area rich of DAT. The synthesis of fluorine-18 labelled [18F]FMISO was optimized, and the tracer was prepared using an automated system with good and reproducible yields. In preclinical studies, the action of the radiation sensitizer estramustine phosphate on the radiation treatment and uptake of [18F]FMISO was evaluated, with results of great importance for later human studies. The methodological part of this thesis showed that radioTLC is the method of choice when combined with an appropriate radioactivity detection technique. Digital PSL autoradiography proved to be the most appropriate when compared to the radioactivity scanning and film autoradiography methods. The very high sensitivity, good resolution, and wide dynamic range of digital PSL autoradiography are its advantages in detection of β-emitting radiolabelled substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trimeric autotransporters are a family of secreted outer membrane proteins in Gram-negative bacteria. These obligate homotrimeric proteins share a conserved C-terminal region, termed the translocation unit. This domain consists of an integral membrane β-barrel anchor and associated α-helices which pass through the pore of the barrel. The α-helices link to the extracellular portion of the protein, the passenger domain. Autotransportation refers to the way in which the passenger domain is secreted into the extracellular space. It appears that the translocation unit mediates the transport of the passenger domain across the outer membrane, and no external factors, such as ATP, ion gradients nor other proteins, are required. The passenger domain of autotransporters contains the specific activities of each protein. These are usually related to virulence. In trimeric autotransporters, the main function of the proteins is to act as adhesins. One such protein is the Yersinia adhesin YadA, found in enteropathogenic species of Yersinia. The main activity of YadA from Y. enterocolitica is to bind collagen, and it also mediates adhesion to other molecules of the extracellular matrix. In addition, YadA is involved in serum resistance, phagocytosis resistance, binding to epithelial cells and autoagglutination. YadA is an essential virulence factor of Y. enterocolitica, and removal of this protein from the bacteria leads to avirulence. In this study, I investigated the YadA-collagen interaction by studying the binding of YadA to collagen-mimicking peptides by several biochemical and biophysical methods. YadA bound as tightly to the triple-helical model peptide (Pro-Hyp-Gly)10 as to native collagen type I. However, YadA failed to bind a similar peptide that does not form a collagenous triple helix. As (Pro-Hyp-Gly)10 does not contain a specific sequence, we concluded that a triple-helical conformation is necessary for YadA binding, but no specific sequence is required. To further investigate binding determinants for YadA in collagens, I examined the binding of YadA to a library of collagen-mimicking peptides that span the entire triple-helical sequences of human collagens type II and type III. YadA bound promiscuously to many but not all peptides, indicating that a triple-helical conformation alone is not sufficient for binding. The high-binding peptides did not share a clear binding motif, but these peptides were rich in hydroxyproline residues and contained a low number of charged residues. YadA thus binds collagens without sequence specificity. This strategy of promiscuous binding may be advantageous for pathogenic bacteria. The Eib proteins from Escherichia coli are immunoglobulin (Ig)-binding homologues of YadA. I showed conclusively that recombinant EibA, EibC, EibD and EibF bind to IgG Fc. I crystallised a fragment of the passenger domain of EibD, which binds IgA in addition to IgG. The structure has a YadA-like head domain and an extended coiled-coil stalk. The top half of the coiled-coil is right-handed with hendecad periodicity, whereas the lower half is a canonical left-handed coiled-coil. At the transition from right- to left-handedness, a small β-sheet protrudes from each monomer. I was able to map the binding regions for IgG and IgA using truncations and site-directed mutagenesis to the coiled-coil stalk and identified residues critical for Ig binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholesterol is an essential component in the membranes of most eukaryotic cells, in which it mediates many functions including membrane fluidity, permeability and the formation of ordered membrane domains. In this work a fluorescent and a non-fluorescent cholesterol analog were characterized as tools to study cholesterol. Next, these analogs were used to study two specific cell biological processes that involve cholesterol, i.e. the structure and function of ordered membrane domains/rafts and intracellular cholesterol transport. The most common method for studying ordered membrane domains is by disrupting them by cholesterol depletion. Because cholesterol depletion affects many cellular functions besides those mediated by membrane domains, this procedure is highly unspecific. The cellular exchange of cholesterol by desmosterol as a tool to study ordered membrane domains was characterized. It turned out that the ability of desmosterol to form and stabilize membrane domains in vitro was weaker compared to cholesterol. This result was reinforced by atomistic scale simulations that indicated that desmosterol has a lower ordering effect on phospholipid acyl chains. Three procedures were established for exchanging cellular cholesterol by desmosterol. In cells in which desmosterol was the main sterol, insulin signaling was attenuated. The results suggest that this was caused by desmosterol destabilizing membrane rafts. Contrary to its effect on ordered membrane domains it was found that replacing cholesterol by desmosterol does not change cell growth/viability, subcellular sterol distribution, Golgi integrity, secretory pathway, phospholipid composition and membrane fluidity. Together these results suggest that exchanging cellular cholesterol by desmosterol provides a selective tool for perturbing rafts. Next, the importance of cholesterol for the structure and function of caveolae was analyzed by exchanging the cellular cholesterol by desmosterol. The sterol exchange reduced the stability of caveolae as determined by detergent resistance of caveolin-1 and heat resistance of caveolin-1 oligomers. Also the sterol exchange led to aberrations in the caveolar structure; the morphology of caveolae was altered and there was a larger variation in the amount of caveolin-1 molecules per caveola. These results demonstrate that cholesterol is important for caveolar stability and structural homogeneity. In the second part of this work a fluorescent cholesterol analog was characterized as a tool to study cholesterol transport. Tight control of the intracellular cholesterol distribution is essential for many cellular processes. An important mechanism by which cells regulate their membrane cholesterol content is by cholesterol traffic, mostly from the plasma membrane to lipid droplets. The fluorescent sterol probe BODIPY-cholesterol was characterized as a tool to analyze cholesterol transport between the plasma membrane, the endoplasmic reticulum (ER) and lipid droplets. The behavior of BODIPY-cholesterol was compared to that of natural sterols, using both biochemical and live-cell microcopy assays. The results show that the transport kinetics of BODIPY-cholesterol between the plasma membrane, the ER and lipid droplets is similar to that of unesterified cholesterol. Next, BODIPY-cholesterol was utilized to analyze the importance of oxysterol binding protein related proteins (ORPs) for cholesterol transport between the plasma membrane, the ER, and lipid droplets in mammalian cells. By overexpressing all human ORPs it turned out that especially ORP1S and ORP2 enhanced sterol transport from the plasma membrane to lipid droplets. Our results suggest that the increased sterol transport takes place between the plasma membrane and ER and not between the ER and lipid droplets. Simultaneous knockdown of ORP1S and ORP2 resulted in a moderate but significant inhibition of sterol traffic from the plasma membrane to ER and lipid droplets, suggesting a physiological role for these ORPs in this process. The two phenylalanines in an acidic tract (FFAT) motif in ORPs, which mediates interaction with vesicle associated membrane protein associated proteins (VAPs) in the ER, was not necessary for mediating sterol transport. However, VAP silencing slowed down sterol transport, most likely by destabilizing ORPs containing a FFAT motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is a worldwide health problem, with adverse outcomes of cardiovascular disease and premature death. The ageing of populations along with the growing prevalence of chronic diseases such as diabetes and hypertension is leading to worldwide increase in the number of CKD patients. It has become evident that inflammation plays an important role in the pathogenesis of atherosclerosis complications. CKD patients also have an increased risk of atherosclerosis complications (including myocardial infarction, sudden death to cardiac arrhythmia, cerebrovascular accidents, and peripheral vascular disease). In line with this, oral and dental problems can be an important source of systemic inflammation. A decline in oral health may potentially act as an early marker of systemic disease progression. This series of studies examined oral health of CKD patients from predialysis, to dialysis and kidney transplantation in a 10-year follow-up study and in a cross-sectional study of predialysis CKD patients. Patients had clinical and radiographic oral and dental examination, resting and stimulated saliva flow rates were measured, whilst the biochemical and microbiological composition of saliva was analyzed. Lifestyle and oral symptoms were recorded using a questionnaire, and blood parameters were collected from the hospital records. The hypothesis was that the oral health status, symptoms, sensations, salivary flow rates and salivary composition vary in different renal failure stages and depend on the etiology of the kidney disease. No statistically significant difference were seen in the longitudinal study in the clinical parameters. However, some saliva parameters after renal transplantation were significantly improved compared to levels at the predialysis stage. The urea concentration of saliva was high in all stages. The salivary and plasma urea concentrations followed a similar trend, showing the lowest values in kidney transplant patients. Levels of immunoglobulin (Ig) A, G and M all decreased significantly after kidney transplantation. Increased concentrations of IgA, IgG and IgM may reflect disintegration of the oral epithelium and are usually markers of poor general oral condition. In the cross-sectional investigation of predialysis CKD patients we compared oral health findings of diabetic nephropathy patients to those with other kidney disease than diabetes. The results showed eg. more dental caries and lower stimulated salivary flow rates in the diabetic patients. HbA1C values of the diabetic patients were significantly higher than those in the other kidney disease group. A statistically significant difference was observed in the number of drugs used daily in the diabetic nephropathy group than in the other kidney disease group. In the logistic regression analyses, age was the principal explanatory factor for high salivary total protein concentration, and for low unstimulated salivary flow. Poor dental health, severity of periodontal disease seemed to be an explanatory factor for high salivary albumin concentrations. Salivary urea levels were significantly linked with diabetic nephropathy and with serum urea concentrations. Contrary to our expectation, however, diabetic nephropathy did not seem to affect periodontal health more severely than the other kidney diseases. Although diabetes is known to associate with xerostomia and other oral symptoms, it did not seem to increase the prevalence of oral discomfort. In summary, this series of studies has provided new information regarding the oral health of CKD patients. As expected, the commencement of renal disease reflects in oral symptoms and signs. Diabetic nephropathy, in particular, appears to impart a requirement for special attention in the oral health care of patients suffering from this disease.