2 resultados para Biochemical and Biomolecular Engineering
em CaltechTHESIS
Resumo:
A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.
The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.
In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.
Resumo:
Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative disease. HD has no cure, and patients pass away 10-20 years after the onset of symptoms. The causal mutation for HD is a trinucleotide repeat expansion in exon 1 of the huntingtin gene that leads to a polyglutamine (polyQ) repeat expansion in the N-terminal region of the huntingtin protein. Interestingly, there is a threshold of 37 polyQ repeats under which little or no disease exists; and above which, patients invariably show symptoms of HD. The huntingtin protein is a 350 kDa protein with unclear function. As the polyQ stretch expands, its propensity to aggregate increases with polyQ length. Models for polyQ toxicity include formation of aggregates that recruit and sequester essential cellular proteins, or altered function producing improper interactions between mutant huntingtin and other proteins. In both models, soluble expanded polyQ may be an intermediate state that can be targeted by potential therapeutics.
In the first study described herein, the conformation of soluble, expanded polyQ was determined to be linear and extended using equilibrium gel filtration and small-angle X-ray scattering. While attempts to purify and crystallize domains of the huntingtin protein were unsuccessful, the aggregation of huntingtin exon 1 was investigated using other biochemical techniques including dynamic light scattering, turbidity analysis, Congo red staining, and thioflavin T fluorescence. Chapter 4 describes crystallization experiments sent to the International Space Station and determination of the X-ray crystal structure of the anti-polyQ Fab MW1. In the final study, multimeric fibronectin type III (FN3) domain proteins were engineered to bind with high avidity to expanded polyQ tracts in mutant huntingtin exon 1. Surface plasmon resonance was used to observe binding of monomeric and multimeric FN3 proteins with huntingtin.