20 resultados para Aldehyde dehydrogenase
em Helda - Digital Repository of University of Helsinki
Defects in tricarboxylic acid cycle enzymes Fumarate hydratase and Succinate dehydrogenase in cancer
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a recently characterized cancer syndrome which predisposes to cutaneous and uterine leiomyomas as well as renal cell carcinoma (RCC). Uterine leiomyosarcoma (ULMS) has also been observed in certain Finnish HLRCC families. The predisposing gene for this syndrome, fumarate hydratase (FH), was identified in 2002. The well-known function of FH is in the tricarboxylic acid cycle (TCAC) in the energy metabolism of cells. As FH is a novel cancer gene, the role of FH mutations in tumours is in general unknown. Similarly, the mechanisms through which defective FH is associated with tumourigenesis are unclear. The loss of a wild type allele has been observed in virtually all HLRCC patients tumours and the FH enzyme activities are either totally lost or remarkably reduced in the tissues of mutation carrier patients. Therefore, FH is assumed to function as a tumour suppressor. Mutations in genes encoding subunits of other TCAC enzyme SDH have also been reported recently in tumours: mutations in SDHB, SDHC, and SDHD genes predispose to paraganglioma and pheochromocytoma. In the present study, mutations in the SDHB gene were observed to predispose to RCC. This was the first time that mutations in SDHB have been detected in extra-paraganglial tumours. Two different SDHB mutations were observed in two unrelated families. In the first family, the index patient was diagnosed with RCC at the age of 24 years. Additionally, his mother with a paraganglioma (PGL) of the heart and his maternal uncle with lung cancer were both carriers of the mutation. The RCC of the index patient and the PGL of his mother showed LOH. In the other family, an SDHB mutation was detected in two siblings who were both diagnosed with RCC at the ages of 24 and 26 years. Both of the siblings also suffered PGL. All these tumours showed LOH. Therefore, we concluded that mutations in SDHB predispose also for RCC in certain families. Several tumour types were analysed for FH mutations to define the role of FH mutations in these tumour types. In addition, patients with a putative cancer phenotype were analysed to identify new HLRCC families. Three FH variants were detected, of which two were novel. One of the variants was observed in a patient diagnosed with ULMS at the age of 41 years. However, LOH was not detected in the tumour tissue. The FH enzyme activity of the mutated protein was clearly reduced, being 43% of the activity of the normal protein. Together with the results from an earlier study we calculated that the prevalence of FH mutations in Finnish non-syndromic ULMS is around 2.4%. Therefore, FH mutations seem to have a minor role in the pathogenesis on non-syndromic ULMS. Two other germline variants were detected in a novel tumour type, ovarian mucinous cystadenoma. However, tumour tissues of the patients were not available for LOH studies and therefore LOH status remained unclear. Therefore, it is possible that FH mutations predispose also for ovarian tumours but further studies are needed to verify this result. A novel variant form of the FH gene (FHv) was identified and characterized in more detail. FHv contains an alternative first exon (1b), which appeared to function as 5 UTR sequence. The translation of FHv is initiated in vitro from exons two and three. The localization of FHv is both cytosolic and nuclear, in contrast to the localization of FH in mitochondria. FHv is expressed at low levels in all human tissues. Interestingly, the expression was induced after heat shock treatment and in chronic hypoxia. Therefore, FHv might have a role e.g. in the adaptation to unfavourable growth conditions. However, this remains to be elucidated.
Resumo:
Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.
Resumo:
The purpose of this work was to identify some of the genes of the catabolic route of L-rhamnose in the yeast Pichia stipitis. There are at least two distinctly different pathways for L-rhamnose catabolism. The one described in bacteria has phosphorylated intermediates and the enzymes and the genes of this route have been described. The pathway described in yeast does not have phosphorylated intermediates. The intermediates and the enzymes of this pathway are known but none of the genes have been identified. The work was started by purifying the L-rhamnose dehydrogenase, which oxidates L-rhamnose to rhamnonic acid-gamma-lactone. NAD is used as a cofactor in this reaction. A DEAE ion exchange column was used for purification. The active fraction was further purified using a non-denaturing PAGE and the active protein identified by zymogram staining. In the last step the protein was separated in a SDS-PAGE, the protein band trypsinated and analysed by MALDI-TOF MS. This resulted in the identification of the corresponding gene, RHA1, which was then, after a codon change, expressed in Saccharomyces cerevisiae. Also C- or N-terminal histidine tags were added but as the activity of the enzyme was lost or strongly reduced these were not used. The kinetic properties of the protein were analysed in the cell extract. Substrate specifity was tested with different sugars; L-rhamnose, L-lyxose and L-mannose were oxidated by the enzyme. Vmax values were 180 nkat/mg, 160 nkat/mg and 72 nkat/mg, respectively. The highest affinity was towards L-rhamnose, the Km value being 0.9 mM. Lower affinities were obtained with L-lyxose, Km 4.3 mM, and L-mannose Km 25 mM. Northern analysis was done to study the transcription of RHA1 with different carbon sources. Transcription was observed only on L-rhamnose suggesting that RHA1 expression is L-rhamnose induced. A RHA1 deletion cassette for P. stipitis was constructed but the cassette had integrated randomly and not targeted to delete the RHA1 gene. Enzyme assays for L-lactaldehyde dehydrogenase were done similarly to L-rhamnose dehydrogenase assays. NAD is used as a cofactor also in this reaction where L-lactaldehyde is oxidised to L-lactate. The observed enzyme activities were very low and the activity was lost during the purification procedures.
Resumo:
Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.
Resumo:
The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.
Resumo:
11β-hydroksisteroididehydrogenaasientsyymit (11β-HSD) 1 ja 2 säätelevät kortisonin ja kortisolin määrää kudoksissa. 11β-HSD1 -entsyymin ylimäärä erityisesti viskeraalisessa rasvakudoksessa aiheuttaa metaboliseen oireyhtymän klassisia oireita, mikä tarjoaa mahdollisuuden metabolisen oireyhtymän hoitoon 11β-HSD1 -entsyymin selektiivisellä estämisellä. 11β-HSD2 -entsyymin inhibitio aiheuttaa kortisonivälitteisen mineralokortikoidireseptorien aktivoitumisen, mikä puolestaan johtaa hypertensiivisiin haittavaikutuksiin. Haittavaikutuksista huolimatta 11β-HSD2 -entsyymin estäminen saattaa olla hyödyllistä tilanteissa, joissa halutaan nostaa kortisolin määrä elimistössä. Lukuisia selektiivisiä 11β-HSD1 inhibiittoreita on kehitetty, mutta 11β-HSD2-inhibiittoreita on raportoitu vähemmän. Ero näiden kahden isotsyymin aktiivisen kohdan välillä on myös tuntematon, mikä vaikeuttaa selektiivisten inhibiittoreiden kehittämistä kummallekin entsyymille. Tällä työllä oli kaksi tarkoitusta: (1) löytää ero 11β-HSD entsyymien välillä ja (2) kehittää farmakoforimalli, jota voitaisiin käyttää selektiivisten 11β-HSD2 -inhibiittoreiden virtuaaliseulontaan. Ongelmaa lähestyttiin tietokoneavusteisesti: homologimallinnuksella, pienmolekyylien telakoinnilla proteiiniin, ligandipohjaisella farmakoforimallinnuksella ja virtuaaliseulonnalla. Homologimallinnukseen käytettiin SwissModeler -ohjelmaa, ja luotu malli oli hyvin päällekäinaseteltavissa niin templaattinsa (17β-HSD1) kuin 11β-HSD1 -entsyymin kanssa. Eroa entsyymien välillä ei löytynyt tarkastelemalla päällekäinaseteltuja entsyymejä. Seitsemän yhdistettä, joista kuusi on 11β-HSD2 -selektiivisiä, telakoitiin molempiin entsyymeihin käyttäen ohjelmaa GOLD. 11β-HSD1 -entsyymiin yhdisteet kiinnittyivät kuten suurin osa 11β-HSD1 -selektiivisistä tai epäselektiivisistä inhibiittoreista, kun taas 11β-HSD2 -entsyymiin kaikki yhdisteet olivat telakoituneet käänteisesti. Tällainen sitoutumistapa mahdollistaa vetysidokset Ser310:een ja Asn171:een, aminohappoihin, jotka olivat nähtävissä vain 11β-HSD2 -entsyymissä. Farmakoforimallinnukseen käytettiin ohjelmaa LigandScout3.0, jolla ajettiin myös virtuaaliseulonnat. Luodut kaksi farmakoforimallia, jotka perustuivat aiemmin telakointiinkin käytettyihin kuuteen 11β-HSD2 -selektiiviseen yhdisteeseen, koostuivat kuudesta ominaisuudesta (vetysidosakseptori, vetysidosdonori ja hydrofobinen), ja kieltoalueista. 11β-HSD2 -selektiivisyyden kannalta tärkeimmät ominaisuudet ovat vetysidosakseptori, joka voi muodostaa sidoksen Ser310 kanssa ja vetysidosdonori sen vieressä. Tälle vetysidosdonorille ei löytynyt vuorovaikutusparia 11β-HSD2-mallista. Sopivasti proteiiniin orientoitunut vesimolekyyli voisi kuitenkin olla sopiva ratkaisu puuttuvalle vuorovaikutusparille. Koska molemmat farmakoforimallit löysivät 11β-HSD2 -selektiivisiä yhdisteitä ja jättivät epäselektiivisiä pois testiseulonnassa, käytettiin molempia malleja Innsbruckin yliopistossa säilytettävistä yhdisteistä (2700 kappaletta) koostetun tietokannan seulontaan. Molemmista seulonnoista löytyneistä hiteistä valittiin yhteensä kymmenen kappaletta, jotka lähetettiin biologisiin testeihin. Biologisien testien tulokset vahvistavat lopullisesti sen kuinka hyvin luodut mallit edustavat todellisuudessa 11β-HSD2 -selektiivisyyttä.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.
Resumo:
The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.