20 resultados para Advanced characterization methods
em Helda - Digital Repository of University of Helsinki
Resumo:
The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.
Resumo:
Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.
Resumo:
In order to evaluate the influence of ambient aerosol particles on cloud formation, climate and human health, detailed information about the concentration and composition of ambient aerosol particles is needed. The dura-tion of aerosol formation, growth and removal processes in the atmosphere range from minutes to hours, which highlights the need for high-time-resolution data in order to understand the underlying processes. This thesis focuses on characterization of ambient levels, size distributions and sources of water-soluble organic carbon (WSOC) in ambient aerosols. The results show that in the location of this study typically 50-60 % of organic carbon in fine particles is water-soluble. The amount of WSOC was observed to increase as aerosols age, likely due to further oxidation of organic compounds. In the boreal region the main sources of WSOC were biomass burning during the winter and secondary aerosol formation during the summer. WSOC was mainly attributed to a fine particle mode between 0.1 - 1 μm, although different size distributions were measured for different sources. The WSOC concentrations and size distributions had a clear seasonal variation. Another main focus of this thesis was to test and further develop the high-time-resolution methods for chemical characterization of ambient aerosol particles. The concentrations of the main chemical components (ions, OC, EC) of ambient aerosol particles were measured online during a year-long intensive measurement campaign conducted on the SMEAR III station in Southern Finland. The results were compared to the results of traditional filter collections in order to study sampling artifacts and limitations related to each method. To achieve better a time resolution for the WSOC and ion measurements, a particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC). The PILS-TOC-IC provided important data about diurnal variations and short-time plumes, which cannot be resolved from the filter samples. In summary, the measurements made for this thesis provide new information on the concentrations, size distribu-tions and sources of WSOC in ambient aerosol particles in the boreal region. The analytical and collection me-thods needed for the online characterization of aerosol chemical composition were further developed in order to provide more reliable high-time-resolution measurements.
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
In this thesis, two separate single nucleotide polymorphism (SNP) genotyping techniques were set up at the Finnish Genome Center, pooled genotyping was evaluated as a screening method for large-scale association studies, and finally, the former approaches were used to identify genetic factors predisposing to two distinct complex diseases by utilizing large epidemiological cohorts and also taking environmental factors into account. The first genotyping platform was based on traditional but improved restriction-fragment-length-polymorphism (RFLP) utilizing 384-microtiter well plates, multiplexing, small reaction volumes (5 µl), and automated genotype calling. We participated in the development of the second genotyping method, based on single nucleotide primer extension (SNuPeTM by Amersham Biosciences), by carrying out the alpha- and beta tests for the chemistry and the allele-calling software. Both techniques proved to be accurate, reliable, and suitable for projects with thousands of samples and tens of markers. Pooled genotyping (genotyping of pooled instead of individual DNA samples) was evaluated with Sequenom s MassArray MALDI-TOF, in addition to SNuPeTM and PCR-RFLP techniques. We used MassArray mainly as a point of comparison, because it is known to be well suited for pooled genotyping. All three methods were shown to be accurate, the standard deviations between measurements being 0.017 for the MassArray, 0.022 for the PCR-RFLP, and 0.026 for the SNuPeTM. The largest source of error in the process of pooled genotyping was shown to be the volumetric error, i.e., the preparation of pools. We also demonstrated that it would have been possible to narrow down the genetic locus underlying congenital chloride diarrhea (CLD), an autosomal recessive disorder, by using the pooling technique instead of genotyping individual samples. Although the approach seems to be well suited for traditional case-control studies, it is difficult to apply if any kind of stratification based on environmental factors is needed. Therefore we chose to continue with individual genotyping in the following association studies. Samples in the two separate large epidemiological cohorts were genotyped with the PCR-RFLP and SNuPeTM techniques. The first of these association studies concerned various pregnancy complications among 100,000 consecutive pregnancies in Finland, of which we genotyped 2292 patients and controls, in addition to a population sample of 644 blood donors, with 7 polymorphisms in the potentially thrombotic genes. In this thesis, the analysis of a sub-study of pregnancy-related venous thromboses was included. We showed that the impact of factor V Leiden polymorphism on pregnancy-related venous thrombosis, but not the other tested polymorphisms, was fairly large (odds ratio 11.6; 95% CI 3.6-33.6), and increased multiplicatively when combined with other risk factors such as obesity or advanced age. Owing to our study design, we were also able to estimate the risks at the population level. The second epidemiological cohort was the Helsinki Birth Cohort of men and women who were born during 1924-1933 in Helsinki. The aim was to identify genetic factors that might modify the well known link between small birth size and adult metabolic diseases, such as type 2 diabetes and impaired glucose tolerance. Among ~500 individuals with detailed birth measurements and current metabolic profile, we found that an insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene was associated with the duration of gestation, and weight and length at birth. Interestingly, the ACE insertion allele was also associated with higher indices of insulin secretion (p=0.0004) in adult life, but only among individuals who were born small (those among the lowest third of birth weight). Likewise, low birth weight was associated with higher indices of insulin secretion (p=0.003), but only among carriers of the ACE insertion allele. The association with birth measurements was also found with a common haplotype of the glucocorticoid receptor (GR) gene. Furthermore, the association between short length at birth and adult impaired glucose tolerance was confined to carriers of this haplotype (p=0.007). These associations exemplify the interaction between environmental factors and genotype, which, possibly due to altered gene expression, predisposes to complex metabolic diseases. Indeed, we showed that the common GR gene haplotype associated with reduced mRNA expression in thymus of three individuals (p=0.0002).
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.
Resumo:
Mulibrey nanism is a hereditary developmental disorder, characterized by prenatal onset growth failure without postnatal catch-up growth, distinctive craniofacial features, progressive cardiopathy and failure of sexual maturation. In addition, the patients develop insulin resistance syndrome and type 2 diabetes and they have an increased risk of developing tumors. The TRIM37 gene that underlies mulibrey nanism encodes for a member of the tripartite motif (TRIM) protein family. The physiological function of TRIM37 and the pathogenetic mechanisms leading from TRIM37 dysfunction to the mulibrey nanism phenotype are unknown. However, TRIM37 localizes at least partially to peroxisomes, and possesses ubiquitin E3-ligase activity. Thus, it may mediate ubiquitin dependent protein degradation, suggesting that accumulation of yet unknown substrate proteins may underlie the disease pathogenesis. In this study, the TRIM37 gene was characterized in detail. A transcription initiation window, with several separate transcription start sites, was identified and the putative promoter region immediately upstream from the transcription initiation window was shown to possess basal promoter activity. Further, several alternative splice variants of the gene were identified, including a highly expressed testis specific variant, encoding for an identical protein product with the main transcript. Expression of TRIM37 mRNA was detected in several different tissues, with highest expression seen in testis and in brain, when the expression patterns of the two major transcripts in different human tissues were studied by quantitative real-time PCR. Several mulibrey nanism patients were studied and thirteen novel mutations in TRIM37 were found, including three mutations (p.Gly322Val, p.Cys109Ser, p.Glu271_Ser287), that are likely to express mutant TRIM37 proteins. These mutations were further shown to alter the subcellular localization of the mutant proteins. Most of the mulibrey nanism associated mutations however, lead to premature termination codons and degradation of mRNA. All the TRIM37 mutations identified to date predict loss-of-function alleles, and thus no phenotype-genotype correlation is seen among the patients. In order to understand the pathogenetic mechanisms underlying mulibrey nanism, an animal model for the disorder is needed. For the development of a Trim37 knock-out mouse, the mouse Trim37 gene was characterized. Alternative splice variants, were identified, including a testis specific variant predicting a longer protein product. Further, a strictly tissue and cell-specific pattern of Trim37 expression was observed in developing and adult mouse tissues, when studied by immunohistochemical methods. This distribution of Trim37 expression in mouse tissues is in agreement with the clinical findings in human mulibrey nanism patients. This thesis work gives new tools for the diagnostics of mulibrey nanism as well as for studying the molecular pathogenesis behind this interesting disorder.
Resumo:
Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.
Resumo:
Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.
Resumo:
Aim: To characterize the inhibition of platelet function by paracetamol in vivo and in vitro, and to evaluate the possible interaction of paracetamol and diclofenac or valdecoxib in vivo. To assess the analgesic effect of the drugs in an experimental pain model. Methods: Healthy volunteers received increasing doses of intravenous paracetamol (15, 22.5 and 30 mg/kg), or the combination of paracetamol 1 g and diclofenac 1.1 mg/kg or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of platelet function was assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and release of thromboxane B2. Analgesia was assessed with the cold pressor test. The inhibition coefficient of platelet aggregation by paracetamol was determined as well as the nature of interaction between paracetamol and diclofenac by an isobolographic analysis in vitro. Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently in volunteers and concentration-dependently in vitro. The inhibition coefficient was 15.2 mg/L (95% CI 11.8 - 18.6). Paracetamol augmented the platelet inhibition by diclofenac in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunction by paracetamol, and the cold-pressor test showed no analgesia. Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when combined with diclofenac. This effect may increase the risk of bleeding in surgical patients with an impaired haemostatic system. The combination of paracetamol and valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 seems unsuitable for detection of platelet dysfunction and the cold-pressor test seems unsuitable for detection of analgesia by paracetamol.
Resumo:
The first observations of solar X-rays date back to late 1940 s. In order to observe solar X-rays the instruments have to be lifted above the Earth s atmosphere, since all high energy radiation from the space is almost totally attenuated by it. This is a good thing for all living creatures, but bad for X-ray astronomers. Detectors observing X-ray emission from space must be placed on-board satellites, which makes this particular discipline of astronomy technologically and operationally demanding, as well as very expensive. In this thesis, I have focused on detectors dedicated to observing solar X-rays in the energy range 1-20 keV. The purpose of these detectors was to measure solar X-rays simultaneously with another X-ray spectrometer measuring fluorescence X-ray emission from the Moon surface. The X-ray fluorescence emission is induced by the primary solar X-rays. If the elemental abundances on the Moon were to be determined with fluorescence analysis methods, the shape and intensity of the simultaneous solar X-ray spectrum must be known. The aim of this thesis is to describe the characterization and operation of our X-ray instruments on-board two Moon missions, SMART-1 and Chandrayaan-1. Also the independent solar science performance of these two almost similar X-ray spectrometers is described. These detectors have the following two features in common. Firstly, the primary detection element is made of a single crystal silicon diode. Secondly, the field of view is circular and very large. The data obtained from these detectors are spectra with a 16 second time resolution. Before launching an instrument into space, its performance must be characterized by ground calibrations. The basic operation of these detectors and their ground calibrations are described in detail. Two C-flares are analyzed as examples for introducing the spectral fitting process. The first flare analysis shows the fit of a single spectrum of the C1-flare obtained during the peak phase. The other analysis example shows how to derive the time evolution of fluxes, emission measures (EM) and temperatures through the whole single C4 flare with the time resolution of 16 s. The preparatory data analysis procedures are also introduced in detail. These are required in spectral fittings of the data. A new solar monitor design equipped with a concentrator optics and a moderate size of field of view is also introduced.
Resumo:
Most new drug molecules discovered today suffer from poor bioavailability. Poor oral bioavailability results mainly from poor dissolution properties of hydrophobic drug molecules, because the drug dissolution is often the rate-limiting event of the drug’s absorption through the intestinal wall into the systemic circulation. During the last few years, the use of mesoporous silica and silicon particles as oral drug delivery vehicles has been widely studied, and there have been promising results of their suitability to enhance the physicochemical properties of poorly soluble drug molecules. Mesoporous silica and silicon particles can be used to enhance the solubility and dissolution rate of a drug by incorporating the drug inside the pores, which are only a few times larger than the drug molecules, and thus, breaking the crystalline structure into a disordered, amorphous form with better dissolution properties. Also, the high surface area of the mesoporous particles improves the dissolution rate of the incorporated drug. In addition, the mesoporous materials can also enhance the permeability of large, hydrophilic drug substances across biological barriers. T he loading process of drugs into silica and silicon mesopores is mainly based on the adsorption of drug molecules from a loading solution into the silica or silicon pore walls. There are several factors that affect the loading process: the surface area, the pore size, the total pore volume, the pore geometry and surface chemistry of the mesoporous material, as well as the chemical nature of the drugs and the solvents. Furthermore, both the pore and the surface structure of the particles also affect the drug release kinetics. In this study, the loading of itraconazole into mesoporous silica (Syloid AL-1 and Syloid 244) and silicon (TOPSi and TCPSi) microparticles was studied, as well as the release of itraconazole from the microparticles and its stability after loading. Itraconazole was selected for this study because of its highly hydrophobic and poorly soluble nature. Different mesoporous materials with different surface structures, pore volumes and surface areas were selected in order to evaluate the structural effect of the particles on the loading degree and dissolution behaviour of the drug using different loading parameters. The loaded particles were characterized with various analytical methods, and the drug release from the particles was assessed by in vitro dissolution tests. The results showed that the loaded drug was apparently in amorphous form after loading, and that the loading process did not alter the chemical structure of the silica or silicon surface. Both the mesoporous silica and silicon microparticles enhanced the solubility and dissolution rate of itraconazole. Moreover, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. Finally, the mesoporous silicon particles loaded with itraconazole were found to be unstable under stressed conditions (at 38 qC and 70 % relative humidity).