21 resultados para 770906 Remnant vegetation and protected conservation areas

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. thesis Participation or Further Exclusion? Contestations over Forest Conservation and Control in the East Usambara Mountains, Tanzania describes and analyses the shift in the prevailing discourse of forest and biodiversity conservation policies and strategies towards more participatory approaches in Tanzania, and the changes in the practises of resource control. I explore the scope for and limits to the different actors and groups who are considered to form the community, to participate in resource control, in a specific historical and socio-economic context. I analyse whether, how and to which extent the targets of such participatory conservation interventions have been able to affect the formal rules and practices of resource control, and explore their different responses and discursive and other strategies in relation to conservation efforts. I approach the problematic through exploring certain participatory conservation interventions and related negotiations between the local farmers, government officials and the external actors in the case of two protected forest reserves in the southern part of the East Usambaras, Tanzania. The study area belongs to the Eastern Arc Mountains that are valued globally and nationally for their high level of biodiversity and number of endemic and near endemic species. The theoretical approach draws from theorising on power, participation and conservation in anthropology of development and post-structuralist political ecology. The material was collected in three stages between 2003 and 2008 by using an ethnographic approach. I interviewed and observed the actors and their resource use and control practices at the local level, including the representatives of the villagers living close to the protected forests and the conservation agency, but also followed the selected processes and engaged with the non-local agencies involved in the conservation efforts in the East Usambaras. In addition, the more recent processes of change and the actors strategies in resource control were contextualised against the social and environmental history of the study area and the evolvement of institutions of natural resource control. My findings indicate that the discourse of participation that has emerged in global conservation policy debate within the past three decades, and is being institutionalised in the national policies in many countries, including Tanzania, has shaped the practices of forest conservation in the East Usambaras, although in a fragmented and uneven way. Instrumental interpretation of participation, in which it is to serve the goals of improving the control of the forest and making it more acceptable and efficient, has prevailed among the governmental actors and conservation organisations. Yet, there is variation between the different projects and actors promoting participatory conservation regarding the goals and means of participation, e.g. to which extent the local people are to be involved in decision-making. The actors representing communities also have their diverse agendas, understandings and experiences regarding the rationality, outcomes and benefits of being involved in forest control, making the practices of control fluid. The elements of the exclusive conservation thinking and practices co-exist with the more recent participatory processes, and continue to shape the understandings and strategies of the actors involved in resource control. The ideas and narratives of the different discourses are reproduced and selectively used by the parties involved. The idea of forest conservation is not resisted as such by most of the actors at local level, quite the opposite. However, the strict regulations and rules governing access to resources, such as valuable timber species, continue to be disputed by many. Furthermore, the history of control, such as past injustices related to conservation and unfulfilled promises, undermines the participation of certain social groups in resource control and benefit sharing. This also creates controversies in the practices of conservation, and fuels conflicts regarding the establishment of new protected areas. In spite of this, the fact that the representatives of the communities have been invited to the arenas where information is shared, and principles and conditions of forest control and benefit sharing are discussed and partly decided upon, has created expectations among the participants, and opened up opportunities for some of the local actors to enhance their own, and sometimes wider interests in relation to resource control and the related benefits. The local actors experiences of the previous government and other interventions strongly affect how they position themselves in relation to conservation interventions, and their responses and strategies. However, my findings also suggest, in a similar way to research conducted in some other protected areas, that the benefits of participation in conservation and resource control tend to accrue unevenly between different groups of local people, e.g. due to unequal access to information and differences in their initial resources and social position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past decades agricultural intensification has caused dramatic population declines in a wide range of taxa related to farmland habitats, including farmland birds. In this thesis, I studied how boreal farmland landscape characteristics and agricultural land use affect the abundance and diversity of farmland birds using extensive field data collected by territory mapping of breeding farmland birds in various parts of Finland. My results show that the area and openness of agricultural areas are key determinants of farmland bird abundance and distribution. A landscape composition with enough open farmland combined with key habitats such as farmyards and wetland is likely to provide essential prerequisites for the occurrence of a rich farmland avifauna. In Finland, the majority of large areas suitable for open habitat specialists are located in southern and western parts of the country. However, the diversity of the species with an unfavourable conservation status in Europe (SPECs) had notable hotspot areas in northern and north-western agricultural areas. I found that in boreal agroecosystems farmland birds favour fields with springtime vegetative cover, especially agricultural grasslands and set-asides. Hence, in the spring cereal dominated Finnish agroecosystems it is the absence of field vegetation that may limit populations of many farmland bird species. It is likely that the decrease of crops providing vegetative cover in the spring, such as permanent grasslands, cultivated grass, and autumn-sown cereals, has greatly contributed to the declines of Finnish farmland birds. Grass crops have persistently declined in Finland as a consequence of specialization in crop production and the large-scale decline in livestock husbandry. Small-scale non-crop habitats, especially ditches and ditch margins, are also important for many bird species in the Finnish agroecosystems, but have dramatically declined during the last decades. A major problem for farmland bird conservation in Finland is the conflict between landscape structure and agricultural management. Areas with mixed and cattle farming are virtually absent from the large agricultural plains of southern and south-western Finland, where the landscape structure is more likely to be favourable for rich farmland bird assemblages. On the other hand, mixed and cattle farming is still rather frequent in northern and central parts of the country, where the landscape structure is not suitable for many farmland specialist birds requiring open landscapes. My results provide useful guidelines for farmland bird conservation, and imply that considerable attention needs to be paid to landscape factors when selecting areas for various conservational management actions, such as agri-environment schemes. Actions promoting the abundance of set-asides, grass crops, and ditches would markedly benefit Finnish farmland bird populations. Organic farming may benefit farmland birds, but it is not clear how general its beneficial effect is in boreal agroecosystems. The most urgent action aiming to preserve farmland biodiversity would be to support re-introducing and sustaining cattle farming by environmental subsidies. This would be especially beneficial in the southern parts of Finland, where the landscape characteristics and abundance of agricultural areas are most suitable for farmland birds and where cattle farming is currently rare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the factors affecting species richness, abundance and species composition of butterflies and moths in Finnish semi-natural grasslands, with a special interest in the effects of grazing management. In addition, an aim was set at evaluating the effectiveness of the support for livestock grazing in semi-natural grasslands, which is included in the Finnish agri-environment scheme. In the first field study, butterfly and moth communities in resumed semi-natural pastures were com-pared to old, annually grazed and abandoned previous pastures. Butterfly and moth species compo-sition in restored pastures resembled the compositions observed in old pastures after circa five years of resumed cattle grazing, but diversity of butterflies and moths in resumed pastures remained at a lower level compared with old pastures. None of the butterfly and moth species typical of old pas-tures had become more abundant in restored pastures compared with abandoned pastures. There-fore, it appears that restoration of butterfly and moth communities inhabiting semi-natural grass-lands requires a longer time that was available for monitoring in this study. In the second study, it was shown that local habitat quality has the largest impact on the occurrence and abundance of butterflies and moths compared to the effects of grassland patch area and connec-tivity of the regional grassland network. This emphasizes the importance of current and historical management of semi-natural grasslands on butterfly and moth communities. A positive effect of habitat connectivity was observed on total abundance of the declining butterflies and moths, sug-gesting that these species have strongest populations in well-connected habitat networks. Highest species richness and peak abundance of most individual species of butterflies and moths were generally observed in taller grassland vegetation compared with vascular plants, suggesting a preference towards less intensive management in insects. These differences between plants and their insect herbivores may be understood in the light of both (1) the higher structural diversity of tall vegetation and (2) weaker tolerance of disturbances by herbivorous insects due to their higher trophic level compared to plants. The ecological requirements of all species and species groups inhabiting semi-natural grasslands are probably never met at single restricted sites. Therefore, regional implementation of management to create differently managed areas is imperative for the conservation of different species and species groups dependent on semi-natural grasslands. With limited resources it might be reasonable to focus much of the management efforts in the densest networks of suitable habitat to minimise the risk of extinction of the declining species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishment of Pinus kesiya Roy. ex Gord. plantations in Thailand began in the 1960s by the Royal Forest Department. The aim was to reforest abandoned swidden areas and grasslands in order to reduce erosion and to produce timber and fuel wood. Today there are about 150, 000 ha of P. kesiya plantations in northern Thailand. Most of these plantations cannot be harvested due to a national logging ban. Previous studies have suggested that Pinus kesiya plantations posses a capability as a foster environment for native broadleaved tree species, but little is known about the extent of regeneration in these plantations. The general aim of the study was to clarify the extent of forest regeneration and interactions behind it in Pinus kesiya plantations of the Ping River basin, northern Thailand. Based on the results of this study and previous literature, forest management proposals were produced for the area studied. In four different pine plantation areas, a total of seven plantations were assessed using systematic data collection with clustered circular sample plots. Vegetation and environmental data were statistically analysed, so as to recognise the key factors affecting regeneration. Regeneration had occurred in all plantations studied. Regeneration of broadleaved trees was negatively affected by forest fire and canopy coverage. A high basal area of mature broadleaved trees affected the regeneration process positively. Forest fire disturbance had a strong effect also on plantation structure and species composition. Because of an unclear future forest management setting as regards forest laws in Thailand, a management system that enables various future utilisation possibilities and emphasises local participation is recommended for P. kesiya watershed platations of northern Thailand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postglacial climate changes and vegetation responses were studied using a combination of biological and physical indicators preserved in lake sediments. Low-frequency trends, high-frequency events and rapid shifts in temperature and moisture balance were probed using pollen-based quantitative temperature reconstructions and oxygen-isotopes from authigenic carbonate and aquatic cellulose, respectively. Pollen and plant macrofossils were employed to shed light on the presence and response rates of plant populations in response to climate changes, particularly focusing on common boreal and temperate tree species. Additional geochemical and isotopic tracers facilitated the interpretation of pollen- and oxygen-isotope data. The results show that the common boreal trees were present in the Baltic region (~55°N) during the Lateglacial, which contrasts with the traditional view of species refuge locations in the south-European peninsulas during the glacial/interglacial cycles. The findings of this work are in agreement with recent paleoecological and genetic evidence suggesting that scattered populations of tree species persisted at higher latitudes, and that these taxa were likely limited to boreal trees. Moreover, the results demonstrate that stepwise changes in plant communities took place in concert with major climate fluctuations of the glacial/interglacial transition. Postglacial climate trends in northern Europe were characterized by rise, maxima and fall in temperatures and related changes in moisture balance. Following the deglaciation of the Northern Hemisphere and the early Holocene reorganization of the ice-ocean-atmosphere system, the long-term temperature trends followed gradually decreasing summer insolation. The early Holocene (~11,700-8000 cal yr BP) was overall cool, moist and oceanic, although the earliest Holocene effective humidity may have been low particularly in the eastern part of northern Europe. The gradual warming trend was interrupted by a cold event ~8200 cal yr BP. The maximum temperatures, ~1.5-3.0°C above modern values, were attained ~8000-4000 cal yr BP. This mid-Holocene peak warmth was coupled with low lake levels, low effective humidity and summertime drought. The late Holocene (~4000 cal yr BP-present) was characterized by gradually decreasing temperatures, higher lake levels and higher effective humidity. Moreover, the gradual trends of the late Holocene were probably superimposed by higher-frequency variability. The spatial variability of the Holocene temperature and moisture balance patterns were tentatively attributed to the differing heat capacities of continents and oceans, changes in atmospheric circulation modes and position of sites and subregions with respect to large water bodies and topographic barriers. The combination of physical and biological proxy archives is a pivotal aspect of this work, because non-climatic factors, such as postglacial migration, disturbances and competitive interactions, can influence reshuffling of vegetation and hence, pollen-based climate reconstructions. The oxygen-isotope records and other physical proxies presented in this work manifest that postglacial climate changes were the main driver of the establishment and expansion of temperate and boreal tree populations, and hence, large-scale and long-term vegetation patterns were in dynamic equilibrium with climate. A notable exception to this pattern may be the postglacial invasion of Norway spruce and the related suppression of mid-Holocene temperate forest. This salient step in north-European vegetation history, the development of the modern boreal ecosystem, cannot be unambiguously explained by current evidence of postglacial climate changes. The results of this work highlight that plant populations, including long-lived trees, may be able to respond strikingly rapidly to changes in climate. Moreover, interannual and seasonal variation and extreme events can exert an important influence on vegetation reshuffling. Importantly, the studies imply that the presence of diffuse refuge populations or local stands among the prevailing vegetation may have provided the means for extraordinarily rapid vegetation responses. Hence, if scattered populations are not provided and tree populations are to migrate long distances, their capacity to keep up with predicted rates of future climate change may be lower than previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing climate change along with increasing levels of pollutants, diseases, habitat loss and fragmentation constitute global threats to the persistence of many populations, species and ecosystems. However, for the long-term persistence of local populations, one of the biggest threats is the intrinsic loss of genetic variation. In order to adapt to changes in the environment, organisms must have a sufficient supply of heritable variation in traits important for their fitness. With a loss of genetic variation, the risk of extinction will increase. For conservational practices, one should therefore understand the processes that shape the genetic population structure and also the broader (historical) phylogenetic patterning of the species in focus. In this thesis, microsatellite markers were applied to study genetic diversity and population differentiation of the protected moor frog (Rana arvalis) in Fennoscandia from both historical (evolutionary) and applied (conservation) perspectives. The results demonstrate that R. arvalis populations are highly structured over rather short geographic distances. Moreover, the results suggest that R. arvalis recolonized Fennoscandia from two directions after the last ice age. This has had implications for the genetic structuring and population differentiation, especially in the northernmost parts where the two lineages have met. Compared to more southern populations, the genetic variation decreases and the interpopulation differentiation increases dramatically towards north. This could be an outcome of serial population bottlenecking along the recolonization route. Also, current isolation and small population sizes increase the effect of drift, thus reinforcing the observed pattern. The same pattern can also be seen in island populations. However, though R. arvalis on the island of Gotland has lost most of its neutral genetic variability, our results indicate that the levels of additive genetic variation have remained high. This conforms to the conjecture that though neutral markers are widely used in conservation purposes, they may be quite uninformative about the levels of genetic variation in ecologically important traits. Finally, the evolutionary impact of the typical amphibian mating behaviour on genetic diversity was investigated. Given the short time available for larval development, it is important that mating takes place as early as possible. The genetic data and earlier capture-recapture data suggest that R. arvalis gather at mating grounds they are familiar with. However, by forming leks in random to relatedness, and having multiple paternities in single clutches, the risk of inbreeding may be minimized in this otherwise highly philopatric species.