25 resultados para 5-HT2A RECEPTORS

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of obesity is increasing at an alarming rate in all age groups worldwide. Obesity is a serious health problem due to increased risk of morbidity and mortality. Although environmental factors play a major role in the development of obesity, the identification of rare monogenic defects in human genes have confirmed that obesity has a strong genetic component. Mutations have been identified in genes encoding proteins of the leptin-melanocortin signaling system, which has an important role in the regulation of appetite and energy balance. The present study aimed at identifying mutations and genetic variations in the melanocortin receptors 2-5 and other genes active on the same signaling pathway accounting for severe early-onset obesity in children and morbid obesity in adults. The main achievement of this thesis was the identification of melanocortin-4 receptor (MC4R) mutations in Finnish patients. Six pathogenic MC4R mutations (308delT, P299H, two S127L and two -439delGC mutations) were identified, corresponding to a prevalence of 3% in severe early-onset obesity. No obesity causing MC4R mutations were found among patients with adult-onset morbid obesity. The MC4R 308delT deletion is predicted to result in a grossly truncated nonfunctional receptor of only 107 amino acids. The C-terminal residues, which are important in MC4R cell surface targeting, are totally absent from the mutant 308delT receptor. In vitro functional studies supported a pathogenic role for the S127L mutation since agonist induced signaling of the receptor was impaired. Cell membrane localization of the S127L receptor did not differ from that of the wild-type receptor, confirming that impaired function of the S127L receptor was due to reduced signaling properties. The P299H mutation leads to intracellular retention of the receptor. The -439delGC deletion is situated at a potential nescient helix-loop-helix 2 (NHLH2) -binding site in the MC4R promoter. It was demonstrated that the transcription factor NHLH2 binds to the consensus sequence at the -439delGC site in vitro, possibly resulting in altered promoter activity. Several genetic variants were identified in the melanocortin-3 receptor (MC3R) and pro-opiomelanocortin (POMC) genes. These polymorphisms do not explain morbid obesity, but the results indicate that some of these genetic variations may be modifying factors in obesity, resulting in subtle changes in obesity-related traits. A risk haplotype for obesity was identified in the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene through a candidate gene single nucleotide polymorphism (SNP) genotyping approach. An ENPP1 haplotype, composed of SNPs rs1800949 and rs943003, was shown to be significantly associated with morbid obesity in adults. Accordingly, the MC3R, POMC and ENPP1 genes represent examples of susceptibility genes in which genetic variants predispose to obesity. In conclusion, pathogenic mutations in the MC4R gene were shown to account for 3% of cases with severe early-onset obesity in Finland. This is in line with results from other populations demonstrating that mutations in the MC4R gene underlie 1-6% of morbid obesity worldwide. MC4R deficiency thus represents the most common monogenic defect causing human obesity reported so far. The severity of the MC4-receptor defect appears to be associated with time of onset and the degree of obesity. Classification of MC4R mutations may provide a useful tool when predicting the outcome of the disease. In addition, several other genetic variants conferring susceptibility to obesity were detected in the MC3R, MC4R, POMC and ENPP1 genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cigarette smoking is, in developed countries, the leading cause of premature death. In tobacco smoke, the main addictive compound is nicotine, which in the brain binds to neuronal nicotinic acetylcholine receptors (neuronal nAChRs). These have been implicated in addiction, but also in several neurological disorders including Alzheimer's and Parkinson's diseases, Tourette's syndrome, attention-deficit hyperactivity disorder (ADHD), schizophrenia, pain, depression, and autosomal-dominant noctural frontal lobe epilepsy; all of which makes nAChRs an intriguing target of study. Chronic treatment with nicotine leads to an increase in the number of nAChRs (upregulation) in the brain and changes their functionality. Changes in the properties of nAChRs are likely to occur in smokers as well, since they are exposed to nicotine for long periods of time. Several nAChR subtypes likely play a role in the formation of nicotine addiction by participating in the release of dopamine in the striatum. The aim of this study was to clarify at cellular level the changes in nAChR characteristics resulting from chronic nicotine treatment. SH-SY5Y cells, endogenously several nAChR-expressing, and SH-EP1-h-alfa7 cells, transfected with the alfa 7 nAChR subunit gene were treated chronically with nicotine. The localisation of alfa 7 and beta2 subunits was studied with confocal and electron microscopy. Functionality of nAChRs was studied with calcium fluorometry. Effects of long-term treatment with opioid compounds on nAChRs were studied by means of ligand binding. Confocal microscopy showed that in SH-SY5Y cells, alfa7 and beta2 subunits formed clusters, unlike the case in SH-EP1-h alfa7 cells, where alfa7 nAChRs were distributed more diffusely. The majority of nAChR subunits localised on endoplasmic reticulum (ER). The isomers of methadone acted as agonists at alfa7 nAChRs. Acute morphine challenge also stimulated nAChRs. Chronic treatment with methadone or morphine led to an increased number of nAChRs. In animal studies, mice received nicotine for 7 weeks. Electron microscopical analysis of the localisation of nAChRs showed in the striatum that alfa7 and beta2 nAChR subunits localised synaptically, extrasynaptically, and intracellularly, with the majority localising extrasynaptically. Chronic nicotine treatment caused an increase in the number of nAChR subunits at all studied locations. These results suggest that the alfa7 nAChR and beta2 subunit-containing nAChRs respond to chronic nicotine treatment differently. This may indicate that the functional balance of various nAChR subtypes in control of the release of dopamine is altered as a result of chronic nicotine treatment. Compounds binding both to opioid and nACh receptors may be of clinical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotine, the addictive compound of tobacco products, exerts its effects in the brain by binding to neuronal acetylcholine nicotinic receptors (nAChRs). The aim of the present study was to increase the knowledge of nicotine s complex effects, the focus being on homomeric alpha7-nAChRs that are widely expressed in the brain. Nicotinic regulation of differential signalling molecules including transcriptional regulators was also studied. We found that the number of alpha7-nAChRs is increased in specific brain regions in mice, in a time-dependent manner after chronic oral nicotine administration. Our results suggest that in addition to alpha4beta2-nAChRs, the other major nAChR subtype expressed in the brain, the number of alpha7-nAChRs is affected by chronic presence of nicotine. We suggest that when studying the long-term effects of nicotine, the duration on administration is of great importance. Next, we observed that nicotine exposure induces accumulation of cAMP in cell cultures expressing nAChRs. Furthermore, nicotine-induced alpha7-nAChR upregulation was potentiated by treatments enhancing cAMP-signalling, suggesting a role for cAMP in the upregulation process. Protein kinase C (PKC) was found essential for the basal regulation of alpha7-nAChR number. The nicotine-evoked alpha7-nAChR upregulation could be further increased by PKC overexpression. Thirdly, the effects of nicotine on dopamine and cAMP regulated phosphoprotein (DARPP-32) were characterised in rat brain. The results show that DARPP-32 is regulated by both acute and long-term nicotine treatment in the striatal subdivisions. The effect of acute nicotine is dose-dependent and the three striatal regions display differential sensitivities to nicotine. Chronic nicotine is also able to regulate DARPP-32 signalling with prominent effect seen in the nucleus accumbens (NAc), suggesting a role for DARPP-32 in the mediation of long-term effects of nicotine. Finally, the regulation of transcription factors Elk-1 and FosB/deltaFosB by nicotine was investigated. We found that Elk-1 is activated by acute nicotine selectively in the NAc core and hippocampal area CA1, whereas acute nicotine does not affect FosB/deltaFosB. Long-term intermittent or continuous nicotine increases the level of total Elk-1 in the same brain regions as acute nicotine. FosB/deltaFosB is also affected by chronic nicotine. Thus, similarly to other drugs of abuse, nicotine regulates transcriptional regulators Elk-1 and FosB/deltaFosB. These results bring further support for a common mechanism underlying the development of addiction. Nicotine s positive effects on learning and memory might involve the transcription factor Elk-1 based on the changes seen in the hippocampus, the key area in cognitive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The beginning point of this research was confusion between studies claiming, that children mature Metalinguistic to read at 6-7 of age, and the fact, that in Montessori playschools children easily start writing and reading at age 3 to 5. Aim was also find out how conception of slow Metalinguistic development has started, and if there is some evidence of phoneme awareness of reading of young children in the field of research of reading. Aim was also seek evidence of the sensitive period of reading as Montessori described it. The research also wanted to turn up, if phoneme awareness only develops in children, who work with graphemes and with reading, or could it be found in children, who do not. The mean was to research how the Montessori reading material supports child’s Metalinguistic development, when child begins learning to read. The research plans to represent knowledge about how young children learn to write and read. Methods. Research performed in ordinary kindergarten and in Montessori playschool in Espoo. In kindergarten observed six children, age 3-4, at eight grapheme-rhyme sessions from January to April 2007, and conducting a test based on Chaney’s (1992) study of phoneme awareness of young children. In Montessori kindergarten were observed 17 children about their phoneme awareness and reading competition from January 2007 to March 2008. Their developments in reading were also measured three times from 1.9.07 to 20.3.08 with classification constructed for this study, loosely based on Chall’s (1983) reading stages. The Montessori reading material was analyzed about the influence they have to a child’s Metalinguistic development. This was done based to theory and its concepts from the field of research of reading; phoneme awareness, morphological, syntactical and semantic consciousness. Results and conclusions. Research proved that children 3-5 have naturally developed phoneme awareness. In kindergarten and in Montessori playschool children between 2 and 4 could do phoneme synthesis, and in the latter they also could do phoneme segmentation of words. Montessori reading material guided children gradually, except to read, also to observe and absorb Metalinguistic knowledge. Children learned to write and read. At the last evaluating day almost 50 % of children write and read clauses or stories, and 82 % could read at least words. Children can develop Metalinguistic awareness, while using the Montessori materials for learning to write and read. To reach literacy is easy for children because of their phoneme awareness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPA receptors are an important class of ionotropic glutamate receptors which participate in fast excitatory synaptic transmission in most brain areas. They have a pivotal role in adjustment of cell membrane excitability as their cell membrane expression levels is altered in brain physiology such as in learning and memory formation. AMPA receptor function and trafficking is regulated by several proteins, such as transmembrane AMPA receptor regulatory proteins (TARPs). NMDA-type glutamate receptors are important target molecules of ethanol. The role of AMPA receptors in the actions of ethanol has not been clarified as thoroughly. Furthermore, the regulation of AMPA receptor synthesis and their possible adaptation in neurons with altered inhibitory mechanisms are poorly understood. In this thesis work AMPA receptor pharmacology, trafficking and synaptic localization was studied using patch-clamp electrophysiology. Both native and recombinant AMPA receptors were studied. Hippocampal slices from transgenic Thy1alfa6 mice with altered inhibition were used to study adaptation of AMPA receptors. Ethanol was found to inhibit AMPA receptor function by increasing desensitization of the receptor, as the steady-state current was inhibited more than the peak current. Ethanol inhibition was reduced when cyclothiazide was used to block desensitization and when non-desensitizing mutant receptors were studied. Ethanol also increased the rate of desensitization, which was increased further by the coexpression of TARP-proteins. We found that the agonist binding capability is important for trafficking AMPA receptors from endoplasmic reticulum to the cell membrane. TARP rescues the surface expression of non-binding AMPA receptor mutants in HEK293 cells, but not in native neurons. Studies with Thy1alfa6 mice revealed that decreased inhibition decrease AMPA receptor mediated excitation keeping the neurotransmission in balance. Thy1alfa6 mice also had lower sensitivity to electroshock convulsions, presumably due to the decreased AMPA receptor function. The results suggest that during alcohol intoxication ethanol may inhibit AMPA receptors by increasing the rate and the extent of desensitization. TARPs appear to enhance ethanol inhibition. TARPs also participate in trafficking of AMPA receptors upon their synthesis in the cell. AMPA receptors mediate also long-term adaptation to altered neuronal excitability, which adds to their well-known role in synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.