300 resultados para Aristote (0384-0322 av. J.-C.) -- Ouvrages avant 1800
Resumo:
An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
Microbes have a decisive role in the barley-malt-beer chain. A major goal of this thesis was to study the relationships between microbial communities and germinating grains during malting. Furthermore, the study provided a basis for tailoring of malt properties with natural, malt-derived microbes. The malting ecosystem is a dynamic process, exhibiting continous change. The first hours of steeping and kilning were the most important steps in the process with regard to microbiological quality. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi formed complex biofilms in barley tissues and were well-protected. Inhibition of one microbial population within the complex ecosystem led to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Both bacterial and fungal communities should be monitored simultaneously. Using different molecular approaches we showed that the diversity of microbes in the malting ecosystem was greater than expected. Even some new microbial groups were found in the malting ecosystem. Suppression of Gram-negative bacteria during steeping was advanategous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contributed to the production of microbial beta-glucanases and xylanases, and were also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be an effective way of balancing the microbial communities in malting. Furthermore, they had positive effects on malt characteristics and notably improved wort separation. Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community was an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of P. anomala C565 into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with L. plantarum E76. The combination of different microbial cultures offers a possibility to use ther different properties, thus making the system more robust. Improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties
Resumo:
B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.
Resumo:
The aim of this study was to explore soil microbial activities related to C and N cycling and the occurrence and concentrations of two important groups of plant secondary compounds, terpenes and phenolic compounds, under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) as well as to study the effects of volatile monoterpenes and tannins on soil microbial activities. The study site, located in Kivalo, northern Finland, included ca. 70-year-old adjacent stands dominated by silver birch, Norway spruce and Scots pine. Originally the soil was very probably similar in all three stands. All forest floor layers (litter (L), fermentation layer (F) and humified layer (H)) under birch and spruce showed higher rates of CO2 production, greater net mineralisation of nitrogen and higher amounts of carbon and nitrogen in microbial biomass than did the forest floor layers under pine. Concentrations of mono-, sesqui-, di- and triterpenes were higher under both conifers than under birch, while the concentration of total water-soluble phenolic compounds as well as the concentration of condensed tannins tended to be higher or at least as high under spruce as under birch or pine. In general, differences between tree species in soil microbial activities and in concentrations of secondary compounds were smaller in the H layer than in the upper layers. The rate of CO2 production and the amount of carbon in the microbial biomass correlated highly positively with the concentration of total water-soluble phenolic compounds and positively with the concentration of condensed tannins. Exposure of soil to volatile monoterpenes and tannins extracted and fractionated from spruce and pine needles affected carbon and nitrogen transformations in soil, but the effects were dependent on the compound and its molecular structure. Monoterpenes decreased net mineralisation of nitrogen and probably had a toxic effect on part of the microbial population in soil, while another part of the microbes seemed to be able to use monoterpenes as a carbon source. With tannins, low-molecular-weight compounds (also compounds other than tannins) increased soil CO2 production and nitrogen immobilisation by soil microbes while the higher-molecular-weight condensed tannins had inhibitory effects. In conclusion, plant secondary compounds may have a great potential in regulation of C and N transformations in forest soils, but the real magnitude of their significance in soil processes is impossible to estimate.
Resumo:
Cardiovascular diseases (CVDs) are the leading cause of mortality in the world. Studies of the impact of single nutrients on the risk for CVD have often provided inconclusive results, and recent research in nutritional epidemiology with a more holistic whole-diet approach has proven fruitful. Moreover, dietary habits in childhood and adolescence may play a role in later health and disease, either independently or by tracking into adulthood. The main aims of this study were to find childhood and adulthood determinants of adulthood diet, to identify dietary patterns present among the study population and to study the associations between long-term food choices and cardiovascular health in young Finnish adults. The study is a part of the multidisciplinary Cardiovascular Risk in Young Finns study, which is an ongoing, prospective cohort study with a 21-year follow-up. At baseline in 1980, the subjects were children and adolescents aged 3 to 18 years (n included in this study = 1768), and young adults aged 24 to 39 years at the latest follow-up study in 2001 (n = 1037). Food consumption and nutrient intakes were assessed with repeated 48-hour dietary recalls. Other determinations have included comprehensive risk factor assessments using blood tests, physical measurements and questionnaires. In the latest follow-up, ultrasound examinations were performed to study early atherosclerotic vascular changes. The average intakes showed substantial changes since 1980. Intakes of fat and saturated fat had decreased, whereas the consumption of fruits and vegetables had increased. Intake of fat and consumption of vegetables in childhood and physical activity in adulthood were important health behavioural determinants of adult diet. Additionally, a principal component analysis was conducted to identify major dietary patterns at each study point. A similar set of two major patterns was recognised throughout the study. The traditional dietary pattern positively correlated with the consumption of traditional Finnish foods, such as rye, potatoes, milk, butter, sausages and coffee, and negatively correlated with fruit, berries and dairy products other than milk. This type of diet was independently associated with several risk factors of CVD, such as total and low-density lipoprotein cholesterol, apolipoprotein B and C-reactive protein concentrations among both genders, as well as with systolic blood pressure and insulin levels among women. The traditional pattern was also independently associated with intima media thickness (IMT), a subclinical predictor of CVD, in men but not in women. The health-conscious pattern, predominant among female subjects, non-smokers and urbanites, was characterised by more health-conscious food choices such as vegetables, legumes and nuts, tea, rye, fish, cheese and other dairy products, as well as by the consumption of alcoholic beverages. This pattern was inversely, but less strongly, associated with cardiovascular risk factors. Tracking of the dietary pattern scores was observed, particularly among subjects who were adolescents at baseline. Moreover, a long-term high intake of protein concurrent with a low intake of fat was positively associated with IMT. These findings suggest that food behaviour and food choices are to some extent established as early as in childhood or adolescence and may significantly track into adulthood. Long-term adherence to traditional food choices seems to increase the risk for developing CVD, especially among men. Those with intentional or unintentional low fat diets, but with high intake of protein may also be at increased risk for CVD. The findings offer practical, food-based information on the relationship between diet and CVD and encourage further use of the whole-diet approach in epidemiological research. The results support earlier findings that long-term food choices play a role in the development of CVD. The apparent influence of childhood habits is important to bear in mind when planning educational strategies for the primary prevention of CVD. Further studies on food choices over the entire lifespan are needed.
Resumo:
B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≤ pH 1) environment. The spores are highly hydrophobic and therefore make them tend to stick to all kinds of surfaces, steel, plastics and live cells. In favorable conditions the spores of B. cereus may germinate into vegetative cells capable of producing food poisoning toxins. The toxins can be heat-labile protein formed after ingestion of the contaminated food, inside the gastrointestinal tract (diarrhoeal toxins), or heat stable peptides formed in the food (emesis causing toxin, cereulide). Cereulide cannot be inactivated in foods by cooking or any other procedure applicable on food. Cereulide in consumed food causes serious illness in human, even fatalities. In this thesis, B. cereus strains originating from different kinds of foods and environments and 8 different countries were inspected for their capability of forming cereulide. Of the 1041 isolates from soil, animal feed, water, air, used bedding, grass, dung and equipment only 1.2 % were capable of producing cereulide, whereas of the 144 isolates originating from foods 24 % were cereulide producers. Cereulide was detected by two methods: by its toxicity towards mammalian cells (sperm assay) and by its peculiar chemical structure using liquid-chromatograph-mass spectrometry equipment. B. cereus is known as one of the most frequent bacteria occurring in food. Most foods contain more than one kind of B. cereus. When randomly selected 100 isolates of B. cereus from commercial infant foods (dry formulas) were tested, 11% of these produced cereulide. Considering a frequent content of 103 to 104 cfu (colony forming units) of B. cereus per gram of infant food formula (dry), it appears likely that most servings (200 ml, 30 g of the powder reconstituted with water) may contain cereulide producers. When a reconstituted infant formula was inoculated with >105 cfu of cereulide producing B. cereus per ml and left at room temperature, cereulide accumulated to food poisoning levels (> 0.1 mg of cereulide per serving) within 24 hours. Paradoxically, the amount of cereulide (per g of food) increased 10 to 50 fold when the food was diluted 4 - 15 fold with water. The amount of the produced cereulide strongly depended on the composition of the formula: most toxin was formed in formulas with cereals mixed with milk, and least toxin in formulas based on milk only. In spite of the aggressive cleaning practices executed by the modern dairy industry, certain genotypes of B. cereus appear to colonise the silos tanks. In this thesis four strategies to explain their survival of their spores in dairy silos were identified. First, high survival (log 15 min kill ≤ 1.5) in the hot alkaline (pH >13) wash liquid, used at the dairies for cleaning-in-place. Second, efficient adherence of the spores to stainless steel from cold water. Third, a cereulide producing group with spores characterized by slow germination in rich medium and well preserved viability when exposed to heating at 90 ºC. Fourth, spores capable of germinating at 8 ºC and possessing the psychrotolerance gene, cspA. There were indications that spores highly resistant to hot 1% sodium hydroxide may be effectively inactivated by hot 0.9% nitric acid. Eight out of the 14 dairy silo tank isolates possessing hot alkali resistant spores were capable of germinating and forming biofilm in whole milk, not previously reported for B. cereus. In this thesis it was shown that cereulide producing B. cereus was capable of inhibiting the growth of cereulide non-producing B. cereus occurring in the same food. This phenomenon, called antagonism, has long been known to exist between B. cereus and other microbial species, e.g. various species of Bacillus, gram-negative bacteria and plant pathogenic fungi. In this thesis intra-species antagonism of B. cereus was shown for the first time. This brother-killing did not depend on the cereulide molecule, also some of the cereulide non-producers were potent antagonists. Interestingly, the antagonistic clades were most frequently found in isolates from food implicated with human illness. The antagonistic property was therefore proposed in this thesis as a novel virulence factor that increases the human morbidity of the species B. cereus, in particular of the cereulide producers.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.
Resumo:
The present study focuses on the translational strategies of Cocksfoot mottle virus (CfMV, genus Sobemovirus), which infects monocotyledonous plants. CfMV RNA lacks the 5'cap and the 3'poly(A) tail that ensure efficient translation of cellular messenger RNAs (mRNAs). Instead, CfMV RNA is covalently linked to a viral protein VPg (viral protein, genome-linked). This indicates that the viral untranslated regions (UTRs) must functionally compensate for the lack of the cap and poly(A) tail. We examined the efficacy of translation initiation in CfMV by comparing it to well-studied viral translational enhancers. Although insertion of the CfMV 5'UTR (CfMVe) into plant expression vectors improved gene expression in barley more than the other translational enhancers examined, studies at the RNA level showed that CfMVe alone or in combination with the CfMV 3'UTR did not provide the RNAs translational advantage. Mutation analysis revealed that translation initiation from CfMVe involved scanning. Interestingly, CfMVe also promoted translation initiation from an intercistronic position of dicistronic mRNAs in vitro. Furthermore, internal initiation occurred with similar efficacy in translation lysates that had reduced concentrations of eukaryotic initiation factor (eIF) 4E, suggesting that initiation was independent of the eIF4E. In contrast, reduced translation in the eIF4G-depleted lysates indicated that translation from internally positioned CfMVe was eIF4G-dependent. After successful translation initiation, leaky scanning brings the ribosomes to the second open reading frame (ORF). The CfMV polyprotein is produced from this and the following overlapping ORF via programmed -1 ribosomal frameshift (-1 PRF). Two signals in the mRNA at the beginning of the overlap program approximately every fifth ribosome to slip one nucleotide backwards and continue translation in the new -1 frame. This leads to the production of C-terminally extended polyprotein, which encodes the viral RNA-dependent RNA polymerase (RdRp). The -1 PRF event in CfMV was very efficient, even though it was programmed by a simple stem-loop structure instead of a pseudoknot, which is usually required for high -1 PRF frequencies. Interestingly, regions surrounding the -1 PRF signals improved the -1 PRF frequencies. Viral protein P27 inhibited the -1 PRF event in vivo, putatively by binding to the -1 PRF site. This suggested that P27 could regulate the occurrence of -1 PRF. Initiation of viral replication requires that viral proteins are released from the polyprotein. This is catalyzed by viral serine protease, which is also encoded from the polyprotein. N-terminal amino acid sequencing of CfMV VPg revealed that the junction of the protease and VPg was cleaved between glutamate (E) and asparagine (N) residues. This suggested that the processing sites used in CfMV differ from the glutamate and serine (S) or threonine (T) sites utilized in other sobemoviruses. However, further analysis revealed that the E/S and E/T sites may be used to cleave out some of the CfMV proteins.
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.
Resumo:
In agricultural systems which rely on organic sources of nitrogen (N), of which the primary source is biological N fixation (BNF), it is extremely important to use N as efficiently as possible with minimal losses to the environment. The amount of N through BNF should be maximised and the availability of the residual N after legumes should be synchronised to the subsequent plant needs in the crop rotation. Six field experiments in three locations in Finland were conducted in 1994-2006 to determine the productivity and amount of BNF in red clover-grass leys of different ages. The residual effects of the leys for subsequent cereals as well as the N leaching risk were studied by field measurements and by simulation using the CoupModel. N use efficiency (NUE) and N balances were also calculated. The yields of red clover-grass leys were highest in the two-year-old leys (6 700 kg ha-1) under study, but the differences between 2- and 3-year old leys were not high in most cases. BNF (90 kg ha-1 in harvested biomass) correlated strongly with red clover dry matter yield, as the proportion of red clover N derived from the atmosphere (> 85%) was high in our conditions of organically farmed field with low soil mineral N. A red clover content of over 40% in dry matter is targeted to avoid negative N-balances and to gain N for the subsequent crop. Surprisingly, the leys had no significant effect on the yields and N uptake of the two subsequent cereals (winter rye or spring wheat, followed by spring oats). On the other hand, yield and C:N of leys, as well as BNF-N and total-N incorporated into the soil influenced on subsequent cereal yields. NUE of cereals from incorporated ley crop residues was rather high, varying from 30% to 80% (mean 48%). The mineral N content of soil in the profile of 0-90 cm was low, mainly 15-30 kg ha-1. Simulation of N dynamics by CoupModel functioned satisfactorily and is considered a useful tool to estimate N flows in cropping systems relying on organic N sources. Understanding the long-term influence of cultivation history and soil properties on N dynamics remains to be a challenge to further research.
Resumo:
Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.
Resumo:
Tutkimuksen tarkoitus on kartoittaa Suomen talviukkosten ominaisuuksia ja klimatologiaa. Tiedot Suomen talviukkosten klimatologista tutkimusta varten kerättiin mm. salamanpaikantimilta ja ihmisten IL:lle tiedottamista havainnoista, SYNOP-kartoilta, rintama-analyyseistä, luotauksista ja luotaustietojen pohjalta piirretyistä salamakartoista sekä sadetutkan kuvista. Tutkimuksessa määriteltiin talviukkoseksi yksi tai useampi salamahavainto säätilanteessa, jossa salamahavaintopaikkaan ja -aikaan nähden lähimmistä synop-havainnoista ainakin yhdessä on havaittu joko ≤ 0 °C lämpötila tai lumi- tai räntäsadetta. Näin rajattuna vuosina 2003-2007 talviukkostapauksia oli 19 kpl. Tapaukset jakaantuivat melko tasaisesti loka-marraskuun vaihteen ja huhtikuun välille, pienet maksimit olivat marras- ja helmikuussa. Tapausten esiintymisajankohtia rajoitti siis vain talviukkosten määritelmän mukaisten sääolosuhteiden esiintyminen. Vuorokaudenajalla ei ollut merkittävää vaikutusta talvisalamoiden esiintymiselle. Alueellisesti talviukkoset painottuivat maan lounaisosaan mutta niitä havaittiin koko maassa Käsivarren Lappia myöten. 16 tapauksessa 19:sta talviukkoset havaittiin okluusiorintamaksi analysoidun rintaman yhteydessä. Yhdessä tapauksessa rintama oli analysoitu kylmäksi ja kahdessa rintama-analyysi oli epäselvä. Matalapaineen keskus sijaitsi iskuhavaintopaikkoihin nähden yleensä lännen puolella. Lännen puolen yleisyyden aiheutti okluusiorintamien kiertosuunta myötäpäivään matalapaineen keskukseen nähden. Pintalämpötila oli lähes kaikissa talviukkostapauksissa lähellä nollaa ja havaintopaikan lähellä olevissa SYNOP-havainnoissa havaittiin useissa tapauksissa sadetta sekä vetenä että kiinteässä olomuodossa. CAPE:n arvot olivat joko nollassa tai hyvin lähellä sitä iskuhavaintoihin nähden lähimmissä luotauksissa. Lämmintä advektiota havaittiin lähes kaikissa tutkituissa luotauksissa, myös sulan meren vaikutus näkyi tuloksissa talviukkosia edistävänä tekijänä. Maasalamoita havaittiin talviukkosten yhteydessä useimmin 1 tai 2 ja iskuja salamaa kohden 1 tai 2. Havaituista maasalamoista positiivisia oli 46 % ja negatiivisia 54 %. Tapaustutkimukset tehtiin kahdesta vuosien 2003-2007 talviukkosia hyvin edustavasta tapauksesta sekä yhdestä salamamäärältään poikkeuksellisen runsaasta tapauksesta.
Resumo:
Proteiinit ovat elämälle välttämättömiä orgaanisia yhdisteitä, jotka koostuvat yhdestä tai useammasta aminohappoketjusta. Proteiinien toiminnan määrää niiden kolmiulotteinen rakenne, joka taas riippuu pitkälti proteiinien aminohappojärjestyksestä, sekvenssistä. Proteiinien tunnettujen sekvenssien määrä kasvaa DNA-sekvensoinnin tuloksena selvästi nopeammin kuin selvitettyjen kolmiulotteisten rakenteiden, konformaatioiden, määrä. Proteiinien rakenteitakin tunnetaan jo lähes 45 000, joten niiden tilastollisella analyysillä on yhä merkittävämpi osuus uusien proteiinien rakenteen määrittämisessä, ennustamisessa ja suunnittelussa. Työssä etsittiin pentapeptidejä (viiden aminohapon pituisia ketjuja), joilla on sama konformaatio kaikissa tunnetuissa proteiinien rakenteissa. Näitä rakennuspalikoita voisi käyttää suoraviivaisessa proteiinien suunnittelussa halutun kolmiulotteisen rakenteen aikaansaamiseksi. Aineistona käytettiin proteiinitietopankin joulukuussa 2007 sisältämiä rakenteita, joihin kuului lähes 45 000 proteiinin kolmiulotteista rakennetta. Aineiston laajuuden takia rakennuspalikoita etsittiin kahdessa vaiheessa vertailemalla pentapeptidien rakenteen keskeisten atomien (CA, CB, O, C ja N) sijaintia proteiinien aminohappoketjuissa. Työssä löytyi yli 9000 rakennuspalikkaa, pentapeptidiä, joista jokaisella oli sama konformaatio yli 12 eri rakennetiedostossa, niissä ilmoitettujen tarkkuuksien rajoissa. Löydetyistä rakennuspalikoista 48:lla oli täysin sama konformaatio kaikkialla, mistä ne löydettiin. Näistä useimmin esiintyneitä voi käyttää suoraan proteiinien rakenneanalyysissä valmiina kolmiulotteisen rakenteen osina. Eri konformaatioihin laskostuvia identtisiä pentapeptidejä löytyi yli 266 000 kappaletta. Rakennuspalikoiden stabiiliudesta johtuen ne saattavat olla tärkeitä proteiinien fysikaalisen mallinnuksen tutkimus- ja vertailukohteina. Käytännön kannalta työn lupaavin tulos oli se, että rakennuspalikoita löytyi eri vasta-aineiden rakennetiedostoista. Ehkäpä juuri vasta-aineita voitaisiin suunnitella työssä esitetyillä menetelmillä.