84 resultados para Classical dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis studies how trade liberalization affects the firm-level productivity and industrial evolution. To do so, I built a dynamic model that considers firm-level productivity as endogenous to investigate the influence of trade on firm’s productivity and the market structure. In the framework, heterogeneous firms in the same industry operate differently in equilibrium. Specifically, firms are ex ante identical but heterogeneity arises as an equilibrium outcome. Under the setting of monopolistic competition, this type of model yields an industry that is represented not by a steady-state outcome, but by an evolution that rely on the decisions made by individual firms. I prove that trade liberalization has a general positive impact on technological adoption rates and hence increases the firm-level productivity. Besides, this endogenous technology adoption model also captures the stylized facts: exporting firms are larger and more productive than their non-exporting counterparts in the same sector. I assume that the number of firms is endogenous, since, according to the empirical literature, the industrial evolution shows considerably different patterns across countries; some industries experience large scale of firms’ exit in the period of contracting market shares, while some industries display relative stable number of firms or gradually increase quantities. The special word “shakeout” is used to describe the dramatic decrease in the number of firms. In order to explain the causes of shakeout, I construct a model where forward-looking firms decide to enter and exit the market on the basis of their state of technology. In equilibrium, firms choose different dates to adopt innovation which generate a gradual diffusion process. It is exactly this gradual diffusion process that generates the rapid, large-scale exit phenomenon. Specifically, it demonstrates that there is a positive feedback between firm’s exit and adoption, the reduction in the number of firms increases the incentives for remaining firms to adopt innovation. Therefore, in the setting of complete information, this model not only generates a shakeout but also captures the stability of an industry. However, the solely national view of industrial evolution neglects the importance of international trade in determining the shape of market structure. In particular, I show that the higher trade barriers lead to more fragile markets, encouraging the over-entry in the initial stage of industry life cycle and raising the probability of a shakeout. Therefore, more liberalized trade generates more stable market structure from both national and international viewpoints. The main references are Ederington and McCalman(2008,2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modern food system and sustainable development form a conceptual combination that suggests sustainability deficits in environmental impacts and nutritional status of western populations. This study explores actors orientations towards sustainability by probing into social dynamics for sustainability within primary production and public consumption. If actors within these two worlds were to express converging orientations for sustainability, the system dynamics of the market would enable more sustainable growth in terms of production dictated by consumption. The study is based on a constructivist research approach with qualitative text analyses. The findings were validated by internal and external food system actors and are suggested to represent current social dynamics within Finnish food system. The key findings included primary producers social skilfulness, which enabled networking with other actors in very different paths of life, learning in order to promote one s trade, and trusting reflectively in partners in order to expand business. These activities extended the supply chain in a spiral fashion by horizontal and vertical forward integration, until large retailers were met for negotiations on a more equal basis. This mode of chain level coordination, typically building around the core of social and partnership relations, was coined as a socially overlaid network, and seen as sustainable coordination mode for endogenous growth. The caterers exhibited more or less committed professional identity for sustainability within their reach. The facilitating approaches for professional identities dealt successfully with local and organic food in addition to domestic food, and also imported food. The co-operation with supply chains created innovative solutions and savings for the business parties to be shared. There were also more complicated identities as juggling, critical and delimited approaches for sustainability, with less productive efforts due to restrictions such as absence of organisational sustainability strategy, weak presence of local and organic suppliers, limited understanding about sustainability and no organisational resources for informed choices for sustainability. The convergence between producers and caterers existed to an extent allowing suggestion that increased clarity about sustainable consumption and production by actors could be constructed using advanced tools. The study looks for introduction of more profound environmental and socio-economic knowledge through participatory research with supply chain actors. Learning in the workplace about food system reality in terms of supply chain co-operation may prove to be a change engine that leads to advanced network operations and a more sustainable food system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The modern food system and sustainable development form a conceptual combination that suggests sustainability deficits in the ways we deal with food consumption and production - in terms of economic relations, environmental impacts and nutritional status of western population. This study explores actors’ orientations towards sustainability by taking into account actors’ embedded positions within structures of the food system, actors’ economic relations and views about sustainability as well as their possibilities for progressive activities. The study looks particularly at social dynamics for sustainability within primary production and public consumption. If actors within these two worlds were to express converging orientations for sustainability, the system dynamics of the market would enable more sustainable growth in terms of production dictated by consumption. The study is based on a constructivist research approach with qualitative text analyses. The data consisted of three text corpora, the ‘local food corpus’, the ‘catering corpus’ and the ‘mixed corpus’. The local food actors were interviewed about their economic exchange relations. The caterers’ interviews dealt with their professional identity for sustainability. Finally, the mixed corpus assembled a dialogue as a participatory research approach, which was applied in order to enable researcher and caterer learning about the use of organic milk in public catering. The data were analysed for theoretically conceptualised relations, expressing behavioural patterns in actors’ everyday work as interpreted by the researcher. The findings were corroborated by the internal and external communities of food system actors. The interpretations have some validity, although they only present abstractions of everyday life and its rich, even opaque, fabric of meanings and aims. The key findings included primary producers’ social skilfulness, which enabled networking with other actors in very different paths of life, learning in order to promote one’s trade, and trusting reflectively in partners in order to extend business. These activities expanded the supply chain in a spiral fashion by horizontal and vertical forward integration, until large retailers were met for negotiations on a more equal or ‘other regarding’ basis. This kind of chain level coordination, typically building around the core of social and partnership relations, was coined as a socially overlaid network. It supported market access of local farmers, rooted in their farms, who were able to draw on local capital and labour in promotion of competitive business; the growth was endogenous. These kinds of chains – one conventional and one organic – were different from the strategic chain, which was more profit based and while highly competitive, presented exogenous growth as it depended on imported capital and local employees. However, the strategic chain offered learning opportunities and support for the local economy. The caterers exhibited more or less committed professional identity for sustainability within their reach. The facilitating and balanced approaches for professional identities dealt successfully with local and organic food in addition to domestic food, and also imported food. The co-operation with supply chains created innovative solutions and savings for the business parties to be shared. The rule-abiding approach for sustainability only made choices among organic supply chains without extending into co-operation with actors. There were also more complicated and troubled identities as juggling, critical and delimited approaches for sustainability, with less productive efforts due to restrictions such as absence of organisational sustainability strategy, weak presence of local and organic suppliers, limited understanding about sustainability and no organisational resources to develop changes towards a sustainable food system. Learning in the workplace about food system reality in terms of supply chain co-operation may prove to be a change engine that leads to advanced network operations and a more sustainable food system. The convergence between primary producers and caterers existed to an extent allowing suggestion that increased clarity about sustainable consumption and production by actors could be approached using advanced tools. The study looks for introduction of more profound environmental and socio-economic knowledge through participatory research with supply chain actors in order to promote more sustainable food systems. Summary of original publications and the authors’ contribution I Mikkola, M. & Seppänen, L. 2006. Farmers’ new participation in food chains: making horizontal and vertical progress by networking. In: Langeveld, H. & Röling N. (Eds.). Changing European farming systems for a better future. New visions for rural areas. Wageningen, The Netherlands. Wageningen Academic Publishers: 267–271. II Mikkola, M. 2008. Coordinative structures and development of food supply chains. British Food Journal 110 (2): 189–205. III Mikkola, M. 2009. Shaping professional identity for sustainability. Evidence in Finnish public catering. Appetite 53 (1): 56–65. IV Mikkola, M. 2009. Catering for sustainability: building a dialogue on organic milk. Agronomy Research 7 (Special issue 2): 668–676. Minna Mikkola has been responsible for developing the generic research frame, particular research questions, the planning and collection of the data, their qualitative analysis and writing the articles I, II, III and IV. Dr Laura Seppänen has contributed to the development of the generic research frame and article I by introducing the author to the basic concepts of economic sociology and by supporting the writing of article II with her critical comments. Articles are printed with permission from the publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.

Relevância:

20.00% 20.00%

Publicador: