83 resultados para isolate protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD; OMIM # 603075) is an eye disease of the elderly, signs of which appear after the age of 50. In the Western world it is a leading cause of permanent visual loss with a prevalence of 8.5% in persons under 54 years of age and of 37% in persons over 75 years of age. Early forms of AMD may be asymptomatic, but in the late forms usually a central scotoma in the visual field follows severely complicating daily tasks. Smoking, age, and genetic predisposition are known risk factors for AMD. Until recently no true susceptibility genes had been identified though the composition of drusen deposits, the hallmarks of AMD, has suggested that the complement system might play a role in the pathogenesis of AMD. When four groups reported in March 2005, that, on chromosome 1q32, a Y402H variant in the complement factor H (CFH) gene confers risk for AMD in independent Caucasian samples, a new period in the field of genetic research of AMD started. CFH is a key regulator of the complement system. Thus, it is logical to speculate, that it plays a role in the pathogenesis of AMD. We performed a case-control association study to analyse whether the CFH Y402H variant contain a risk for AMD in the Finnish population. Although the population of Finland represents a genetic isolate, the CFH Y402H polymorphism was associated with AMD also in our patient sample with similar risk allele frequencies as in the other Caucasian populations. We further evaluated the effects of this variant, but no association between lesion subtype (predominantly classic, minimally classic or occult lesion) or lesion size of neovascular AMD and the CFH Y402H variant was detected. Neither did the variant have an effect on the photodynamic therapy (PDT) outcome. The patients that respond to PDT carried the risk genotype as frequently as those who did not respond, and no difference was found in the number of PDT sessions needed in patients with or without the risk genotypes of CFH Y402H. Functional analyses, however, showed that the binding of C-reactive protein (CRP) to CFH was significantly reduced in patients with the risk genotype of Y402H. In the past two years, the LOC387715/ high-temperature requirement factor A1 (HTRA1) locus on 10q26 has also been repeatedly associated with AMD in several populations. The recent discovery of the LOC387715 protein on the mitochondrial outer membrane suggests that the LOC387715 gene, not HTRA1, is the true predisposing gene in this region, although its biological function is still unknown. In our Finnish patient material, patients with AMD carried the A69S risk genotype of LOC387715 more frequently than the controls. Also, for the first time, an interaction between the CFH Y402H and the LOC387715 A69S variants was found. The most recently detected susceptibilty gene of AMD, the complement component 3 (C3) gene, encodes the central component of the complement system, C3. In our Finnish sample, an additive gene effect for the C3 locus was detected, though weaker than the effects for the two main loci, CFH and LOC387715. Instead, the hemicentin-1 or the elongation of very long chain fatty acids-like 4 genes that have also been suggested as candidate genes for AMD did not carry a risk for AMD in the Finnish population. This was the first series of molecular genetic study of AMD in Finland. We showed that two common risk variants, CFH Y402H and LOC387715 A69S, represent a high risk of AMD also in the isolated Finnish population, and furthermore, that they had a statistical interaction. It was demonstrated that the CFH Y402H risk genotype affects the binding of CFH to CRP thus suggesting that complement indeed plays an important role in the pathogenesis of AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is part of the joint project "The Genetic Epidemiology and Molecular Genetics of schizophrenia in Finland" between the Departments of Mental Health and Alcohol Research, and Molecular Medicine at the National Public Health Institute. In the study, we utilized three nationwide health care registers: 1) the Hospital Discharge Register, 2) the Free Medication Register, and 3) the Disability Pension Register, plus the National Population Register, in order to identify all patients with schizophrenia born from 1940 to 1976 (N=33,731) in Finland, and their first degree-relatives. 658 patients with at least one parent born in a homogeneous isolate in northeastern Finland were identified, as well as 4904 familial schizophrenia patients with at least two affected siblings from the whole country. The comparison group was derived from the Health 2000 Study. We collected case records and reassessed the register diagnosis. Were contacted the isolate patients and a random sample of patients from the whole country to make diagnostic clinical interviews and to assess the negative and positive symptoms and signs of schizophrenia. In addition to these patients, we interviewed siblings who were initially healthy according to the Hospital Discharge Register. Of those with a register diagnosis of schizophrenia, schizoaffective or schizophreniform disorder, 69% received a record-based consensus diagnosis and 63% an interview-based diagnosis of schizophrenia. Patients with schizophrenia having first-degree relatives with psychotic disorder had more severe affective flattening and alogia than those who were the only affected individuals in their family. The novel findings were: 1) The prevalence of schizophrenia in the isolate was relatively high based on register (1.5%), case record (0.9-1.3%), and interview (0.7-1.2%) data. 2) Isolate patients, regardless of their familial loading for schizophrenia, had less delusions and hallucinations than the whole country familial patients, which may be related to the genetic homogeneity in the isolate. This phenotype encourages the use of endophenotypes in genetic analyses instead of diagnoses alone. 3) The absence of register diagnosis does not confirm that siblings are healthy, because 7.7% of siblings had psychotic symptoms already before the register diagnoses were identified in 1991. For genetic research, the register diagnosis should therefore be reassessed using either a structured interview or a best- estimate case note consensus diagnosis. Structured clinical interview methods need be considered also in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) transport lactate and protons across cell membranes. During intense exercise, lactate and protons accumulate in the exercising muscle and are transported to the plasma. In the horse, MCTs are responsible for the majority of lactate and proton removal from exercising muscle, and are therefore also the main mechanism to hinder the decline in pH in muscle cells. Two isoforms, MCT1 and MCT4, which need an ancillary protein CD147, are expressed in equine muscle. In the horse, as in other species, MCT1 is predominantly expressed in oxidative fibres, where its likely role is to transport lactate into the fibre to be used as a fuel at rest and during light work, and to remove lactate during intensive exercise when anaerobic energy production is needed. The expression of CD147 follows the fibre type distribution of MCT1. These proteins were detected in both the cytoplasm and sarcolemma of muscle cells in the horse breeds studied: Standardbred and Coldblood trotters. In humans, training increases the expression of both MCT1 and MCT4. In this study, the proportion of oxidative fibres in the muscle of Norwegian-Swedish Coldblood trotters increased with training. Simultaneously, the expression of MCT1 and CD147, measured immunohistochemically, seemed to increase more in the cytoplasm of oxidative fibres than in the fast fibre type IIB. Horse MCT4 antibody failed to work in immunohistochemistry. In the future, a quantitative method should be introduced to examine the effect of training on muscle MCT expression in the horse. Lactate can be taken up from plasma by red blood cells (RBCs). In horses, two isoforms, MCT1 and MCT2, and the ancillary protein CD147 are expressed in RBC membranes. The horse is the only species studied in which RBCs have been found to express MCT2, and the physiological role of this protein in RBCs is unknown. The majority of horses express all three proteins, but 10-20% of horses express little or no MCT1 or CD147. This leads to large interindividual variation in the capacity to transport lactate into RBCs. Here, the expression level of MCT1 and CD147 was bimodally distributed in three studied horse breeds: Finnhorse, Standardbred and Thoroughbred. The level of MCT2 expression was distributed unimodally. The expression level of lactate transporters could not be linked to performance markers in Thoroughbred racehorses. In the future, better performance indexes should be developed to better enable the assessment of whether the level of MCT expression affects athletic performance. In human subjects, several mutations in MCT1 have been shown to cause decreased lactate transport activity in muscle and signs of myopathy. In the horse, two amino acid sequence variations, one of which was novel, were detected in MCT1 (V432I and K457Q). The mutations found in horses were in different areas compared to mutations found in humans. One mutation (M125V) was detected in CD147. The mutations found could not be linked with exercise-induced myopathy. MCT4 cDNA was sequenced for the first time in the horse, but no mutations could be detected in this protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature review elucidates the mechanism of oxidation in proteins and amino acids and gives an overview of the detection and analysis of protein oxidation products as well as information about ?-lactoglobulin and studies carried out on modifications of this protein under certain conditions. The experimental research included the fractionation of the tryptic peptides of ?-lactoglobulin using preparative-HPLC-MS and monitoring the oxidation process of these peptides via reverse phase-HPLC-UV. Peptides chosen to be oxidized were selected with respect to their amino acid content which were susceptible to oxidation and fractionated according to their m/z values. These peptides were: IPAVFK (m/z 674), ALPMHIR (m/z 838), LIVTQTMK (m/z 934) and VLVLDTDYK (m/z 1066). Even though it was not possible to solely isolate the target peptides due to co-elution of various fractions, the percentages of target peptides in the samples were satisfactory to carry out the oxidation procedure. IPAVFK and VLVLDTDYK fractions were found to yield the oxidation products reviewed in literature, however, unoxidized peptides were still present in high amounts after 21 days of oxidation. The UV data at 260 and 280 nm enabled to monitor both the main peptides and the oxidation products due to the absorbance of aromatic side-chains these peptides possess. ALPMHIR and LIVTQTMK fractions were oxidatively consumed rapidly and oxidation products of these peptides were observed even on day 0. High rates of depletion of these peptides were acredited to the presence of His (H) and sulfur-containing side-chains of Met (M). In conclusion, selected peptides hold the potential to be utilized as marker peptides in ?-lactoglobulin oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pohjoisella havumetsävyöhykkeellä typpi on usein kasvien kasvua rajoittava tekijä. Metsämaan typpivarannot koostuvat pääasiassa orgaaniseen ainekseen sitoutuneista typpiyhdisteistä, erityisesti aminohapoista. Ektomykorritsasienet osallistuvat metsämaassa tapahtuvaan typenkiertoon hajottamalla orgaanisia typpiyhdisteitä ja kuljettamalla niitä kasvien käytettäväksi. Sienisolun sisällä tapahtuvasta aminohappojen mineralisaatiosta tiedetään toistaiseksi melko vähän. Aminohappo-oksidaasit katalysoivat aminohappojen mineralisaatiota. Eräissä ektomykorritsaa muodostavien kantasienten suvuissa on osoitettu L-aminohappo-oksidaaseja (LAO). Toistaiseksi LAO-geeniä ei tunneta kantasienistä. Työssä kuvattiin ensimmäistä kertaa LAO-geeni kantasienistä. Hiekkatympösen LAO1- geenin cDNA:n 5´ ja 3´ päiden emäsjärjestykset määritettiin RACE-PCR -menetelmällä, josta saatujen sekvenssien perusteella suunniteltiin alukkeet koko geenin cDNA:n ja genomisen DNA:n monistamiseksi. Genomisen DNA ja cDNA -sekvenssien perusteella määritettiin hiekkatympösen LAO1-geenin rakenne. Hiekkatympösen LAO1-geeni koostuu viidestä eksonista ja neljästä intronista. Hiekkatympösen LAO1-geenin yläpuoliselta alueelta löydettiin typpimetabolian säätelyyn osallistuvan proteiinin sitoutumiskohta. LAO1-geeniä edeltävä geenin osittainen genominen DNA-sekvenssi määritettiin. Kangaslohisienen genomissa LAO1-geeniä edeltävä geeni oli ennustettu pyruvaattidekarboksylaasiksi. Lisäksi työssä määritettiin hiekkatympösen toisen LAOhomologin cDNA:n osittainen emäsjärjestys. Työssä tunnistettiin myös toisen kantasienen, kangaslohisienen, LAO-geeni. LAO-geeniksi tunnistettu kangaslohisienen geenimalli oli aiemmin ennustettu NCBI:n tietokannassa toiminnaltaan tuntemattomaksi proteiiniksi. Proteiinien sukupuun perusteella hiekkatympösen ja kangaslohisienen LAO:n kantamuoto on kahdentunut. Työstä saatu tutkimustulos tuo täysin uutta tietoa molekyylibiologian tasolla ektomykorritsasienten aminohappojen katabolisista reaktioista. Aminohappojen mineralisaation seurauksen muodostuneet ammoniumionit saattavat olla merkittävä typen lähde myös maan muille mikrobeille ja kasveille. On mahdollista, että ektomykorritsasienten LAO-entsyymi on yksi merkittävä tekijä metsämaan typenkierrossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alphaviruses are positive strand RNA viruses that replicate in association with cellular membranes. The viral RNA replication complex consists of four non-structural proteins nsP1-nsP4 which are essential for viral replication. The functions of nsP1, nsP2 and nsP4 are well established, but the roles of nsP3 are mainly unknown. In this work I have clarified some of the functions of nsP3 in order to better understand the importance of this protein in virus replication. Semliki Forest virus (SFV) has been mostly used as a model alphavirus during this work, but some experiments have also been conducted with Sindbis and Chikungunya viruses. NsP3 is composed of three different protein domains. The N-terminus of nsP3 contains an evolutionarily conserved macrodomain, the central part of nsP3 contains a domain that is only found in alphaviruses, and the C-terminus of the protein is hypervariable and predicted to be unstructured. In this work I have analyzed the functions of nsP3 macrodomain, and shown that viral macrodomains bind poly(ADP-ribose) and that they do not resemble cellular macrodomains in their properties. Furthermore, I have shown that some macrodomains, including viral macrodomains of SFV and hepatitis E virus, also bind poly(A). Mutations in the ligand binding pocket of SFV macrodomain hamper virus replication but do not confer lethality, indicating that macrodomain function is beneficial but not mandatory for virus replication. The hypervariable C-terminus of nsP3 is heavily phosphorylated and is enriched in proline residues. In this work it is shown that this region harbors an SH3 domain binding motif (Sh3BM) PxRxPR through which cellular amphiphysin is recruited to viral replication sites and to nsP3 containing cytoplasmic aggregate structures. The function of Sh3BM was destroyed by a single point mutation, which led to impaired viral RNA replication in HeLa cells, pointing out the functional importance of amphiphysin recruitment by the Sh3BM. In addition, evidence is provided tho show that the endosomal localization of alphavirus replication is mediated by nsP3 and that the phosphorylation of hypervariable region might be important for the endosomal targeting. Together these findings demonstrate that nsP3 contains multiple important host interaction motifs and domains, which facilitate successful viral propagation in host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplified model of human tear fluid (TF) is a three-layered structure composed of a homogenous gel-like layer of hydrated mucins, an aqueous phase, and a lipid-rich outermost layer found in the tear-air interface. It is assumed that amphiphilic phospholipids are found adjacent to the aqueous-mucin layer and externally to this a layer composed of non-polar lipids face the tear-air interface. The lipid layer prevents evaporation of the TF and protects the eye, but excess accumulation of lipids may lead to drying of the corneal epithelium. Thus the lipid layer must be controlled and maintained by some molecular mechanisms. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. The aim of this thesis was to investigate the presence and molecular mechanisms of lipid transfer proteins in human TF. The purpose was also to study the role of these proteins in the development of dry eye syndrome (DES). The presence of TF PLTP and CETP was studied by western blotting and mass spectrometry. The concentration of these proteins was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. To study the molecular mechanisms involved in PLTP mediated lipid transfer Langmuir monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) was used. Ocular tissue samples were stained with monoclonal antibodies against PLTP to study the secretion route of PLTP. Heparin-Sepharose affinity chromatography was used for PLTP pull-down experiments and co-eluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. To study whether PLTP plays any functional role in TF PLTP-deficient mice were examined. The activity of PLTP was also studied in dry eye patients. PLTP is a component of normal human TF, whereas CETP is not. TF PLTP concentration was about 2-fold higher than that in human plasma. Inactivation of PLTP by heat treatment or immunoinhibition abolished the phospholipid transfer activity in tear fluid. PLTP was found to be secreted from lacrimal glands. PLTP seems to be surface active and is capable of accepting lipid molecules without the presence of lipid-protein complexes. The active movement of radioactively labeled lipids and high activity form of PLTP to acceptor particles suggested a shuttle model of PLTP-mediated lipid transfer. In this model, PLTP physically transports lipids between the donor and acceptor. Protein-protein interaction assays revealed ocular mucins as PLTP interaction partners in TF. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression was demonstrated. Increased tear fluid PLTP activity was observed among human DES patients. These results together suggest a scavenger property of TF PLTP: if the corneal epithelium is contaminated by hydrophobic material, PLTP could remove them and transport them to the superficial layer of the TF or, alternatively, transport them through the naso-lacrimal duct. Thus, PLTP might play an integral role in tear lipid trafficking and in the protection of the corneal epithelium. The increased PLTP activity in human DES patients suggests an ocular surface protective role for this lipid transfer protein.