67 resultados para body conditions
Resumo:
Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.
Resumo:
Introduction: Combination antiretroviral therapy (cART) has decreased morbidity and mortality of individuals infected with human immunodeficiency virus type 1 (HIV-1). Its use, however, is associated with adverse effects which increase the patients risk of conditions such as diabetes and coronary heart disease. Perhaps the most stigmatizing side effect is lipodystrophy, i.e., the loss of subcutaneous adipose tissue (SAT) in the face, limbs and trunk while fat accumulates intra-abdominally and dorsocervically. The pathogenesis of cART-associated lipodystrophy is obscure. Nucleoside reverse transcriptase inhibitors (NRTI) have been implicated to cause lipoatrophy via mitochondrial toxicity. There is no known effective treatment for cART-associated lipodystrophy during unchanged antiretroviral regimen in humans, but in vitro data have shown uridine to abrogate NRTI-induced toxicity in adipocytes. Aims: To investigate whether i) cART or lipodystrophy associated with its use affect arterial stiffness; ii) lipoatrophic SAT is inflamed compared to non-lipoatrophic SAT; iii) abdominal SAT from patients with compared to those without cART-associated lipoatrophy differs with respect to mitochondrial DNA (mtDNA) content, adipose tissue inflammation and gene expression, and if NRTIs stavudine and zidovudine are associated with different degree of changes; iv) lipoatrophic abdominal SAT differs from preserved dorsocervical SAT with respect to mtDNA content, adipose tissue inflammation and gene expression in patients with cART-associated lipodystrophy and v) whether uridine can revert lipoatrophy and the associated metabolic disturbances in patients on stavudine or zidovudine based cART. Subjects and methods: 64 cART-treated patients with (n=45) and without lipodystrophy/-atrophy (n=19) were compared cross-sectionally. A marker of arterial stiffness, heart rate corrected augmentation index (AgIHR), was measured by pulse wave analysis. Body composition was measured by magnetic resonance imaging and dual-energy X-ray absorptiometry, and liver fat content by proton magnetic resonance spectroscopy. Gene expression and mtDNA content in SAT were assessed by real-time polymerase chain reaction and microarray. Adipose tissue composition and inflammation were assessed by histology and immunohistochemistry. Dorsocervical and abdominal SAT were studied. The efficacy and safety of uridine for the treatment of cART-associated lipoatrophy were evaluated in a randomized, double-blind, placebo-controlled 3-month trial in 20 lipoatrophic cART-treated patients. Results: Duration of antiretroviral treatment and cumulative exposure to NRTIs and protease inhibitors, but not the presence of cART-associated lipodystrophy, predicted AgIHR independent of age and blood pressure. Gene expression of inflammatory markers was increased in SAT of lipodystrophic as compared to non-lipodystrophic patients. Expression of genes involved in adipogenesis, triglyceride synthesis and glucose disposal was lower and of those involved in mitochondrial biogenesis, apoptosis and oxidative stress higher in SAT of patients with than without cART-associated lipoatrophy. Most changes were more pronounced in stavudine-treated than in zidovudine-treated individuals. Lipoatrophic SAT had lower mtDNA than SAT of non-lipoatrophic patients. Expression of inflammatory genes was lower in dorsocervical than in abdominal SAT. Neither depot had characteristics of brown adipose tissue. Despite being spared from lipoatrophy, dorsocervical SAT of lipodystrophic patients had lower mtDNA than the phenotypically similar corresponding depot of non-lipodystrophic patients. The greatest difference in gene expression between dorsocervical and abdominal SAT, irrespective of lipodystrophy status, was in expression of homeobox genes that regulate transcription and regionalization of organs during embryonal development. Uridine increased limb fat and its proportion of total fat, but had no effect on liver fat content and markers of insulin resistance. Conclusions: Long-term cART is associated with increased arterial stiffness and, thus, with higher cardiovascular risk. Lipoatrophic abdominal SAT is characterized by inflammation, apoptosis and mtDNA depletion. As mtDNA is depleted even in non-lipoatrophic dorsocervical SAT, lipoatrophy is unlikely to be caused directly by mtDNA depletion. Preserved dorsocervical SAT of patients with cART-associated lipodystrophy is less inflamed than their lipoatrophic abdominal SAT, and does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal SAT is in expression of transcriptional regulators, homeobox genes, which might explain the differential susceptibility of these adipose tissue depots to cART-induced toxicity. Uridine is able to increase peripheral SAT in lipoatrophic patients during unchanged cART.
Resumo:
Traumatic brain injury (TBI) affects people of all ages and is a cause of long-term disability. In recent years, the epidemiological patterns of TBI have been changing. TBI is a heterogeneous disorder with different forms of presentation and highly individual outcome regarding functioning and health-related quality of life (HRQoL). The meaning of disability differs from person to person based on the individual s personality, value system, past experience, and the purpose he or she sees in life. Understanding of all these viewpoints is needed in comprehensive rehabilitation. This study examines the epidemiology of TBI in Finland as well as functioning and HRQoL after TBI, and compares the subjective and objective assessments of outcome. The frame of reference is the International Classification of Functioning, Disability and Health (ICF). The subjects of Study I represent the population of Finnish TBI patients who experienced their first TBI between 1991 and 2005. The 55 Finnish subjects of Studies II and IV participated in the first wave of the international Quality of life after brain injury (QOLIBRI) validation study. The 795 subjects from six language areas of Study III formed the second wave of the QOLIBRI validation study. The average annual incidence of Finnish hospitalised TBI patients during the years 1991-2005 was 101:100 000 in patients who had TBI as the primary diagnosis and did not have a previous TBI in their medical history. Males (59.2%) were at considerably higher risk of getting a TBI than females. The most common external cause of the injury was falls in all age groups. The number of TBI patients ≥ 70 years of age increased by 59.4% while the number of inhabitants older than 70 years increased by 30.3% in the population of Finland during the same time period. The functioning of a sample of 55 persons with TBI was assessed by extracting information from the patients medical documents using the ICF checklist. The most common problems were found in the ICF components of Body Functions (b) and Activities and Participation (d). HRQoL was assessed with the QOLIBRI which showed the highest level of satisfaction on the Emotions, Physical Problems and Daily Life and Autonomy scales. The highest scores were obtained by the youngest participants and participants living independently without the help of other people, and by people who were working. The relationship between the functional outcome and HRQoL was not straightforward. The procedure of linking the QOLIBRI and the GOSE to the ICF showed that these two outcome measures cover the relevant domains of TBI patients functioning. The QOLIBRI provides the patients subjective view, while the GOSE summarises the objective elements of functioning. Our study indicates that there are certain domains of functioning that are not traditionally sufficiently documented but are important for the HRQoL of persons with TBI. This was the finding especially in the domains of interpersonal relationships, social and leisure activities, self, and the environment. Rehabilitation aims to optimize functioning and to minimize the experience of disability among people with health conditions, and it needs to be based on a comprehensive understanding of human functioning. As an integrative model, the ICF may serve as a frame of reference in achieving such an understanding.
Resumo:
Bile acids are important steroid-derived molecules essential for fat absorption in the small intestine. They are produced in the liver and secreted into the bile. Bile acids are transported by bile flow to the small intestine, where they aid the digestion of lipids. Most bile acids are reabsorbed in the small intestine and return to the liver through the portal vein. The whole recycling process is referred to as the enterohepatic circulation, during which only a small amount of bile acids are removed from the body via faeces. The enterohepatic circulation of bile acids involves the delicate coordination of a number of bile acid transporters expressed in the liver and the small intestine. Organic anion transporting polypeptide 1B1 (OATP1B1), encoded by the solute carrier organic anion transporter family, member 1B1 (SLCO1B1) gene, mediates the sodium independent hepatocellular uptake of bile acids. Two common SNPs in the SLCO1B1 gene are well known to affect the transport activity of OATP1B1. Moreover, bile acid synthesis is an important elimination route for cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme of bile acid production. The aim of this thesis was to investigate the effects of SLCO1B1 polymorphism on the fasting plasma levels of individual endogenous bile acids and a bile acid synthesis marker, and the pharmacokinetics of exogenously administered ursodeoxycholic acid (UDCA). Furthermore, the effects of CYP7A1 genetic polymorphism and gender on the fasting plasma concentrations of individual endogenous bile acids and the bile acid synthesis marker were evaluated. Firstly, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of bile acids was developed (Study I). A retrospective study examined the effects of SLCO1B1 genetic polymorphism on the fasting plasma concentrations of individual bile acids and a bile acid synthesis marker in 65 healthy subjects (Study II). In another retrospective study with 143 healthy individuals, the effects of CYP7A1 genetic polymorphism and gender as well as SLCO1B1 polymorphism on the fasting plasma levels of individual bile acids and the bile acid synthesis marker were investigated (Study III). The effects of SLCO1B1 polymorphism on the pharmacokinetics of exogenously administered UDCA were evaluated in a prospective genotype panel study including 27 healthy volunteers (Study IV). A robust, sensitive and simple HPLC-MS/MS method was developed for the simultaneous determination of 16 individual bile acids in human plasma. The method validation parameters for all the analytes met the requirements of the FDA (Food and Drug Administration) bioanalytical guidelines. This HPLC-MS/MS method was applied in Studies II-IV. In Study II, the fasting plasma concentrations of several bile acids and the bile acid synthesis marker seemed to be affected by SLCO1B1 genetic polymorphism, but these findings were not replicated in Study III with a larger sample size. Moreover, SLCO1B1 polymorphism had no effect on the pharmacokinetic parameters of exogenously administered UDCA. Furthermore, no consistent association was observed between CYP7A1 genetic polymorphism and the fasting plasma concentrations of individual bile acids or the bile acid synthesis marker. In contrast, gender had a major effect on the fasting plasma concentrations of several bile acids and also total bile acids. In conclusion, gender, but not SLCO1B1 or CYP7A1 polymorphisms, has a major effect on the fasting plasma concentrations of individual bile acids. Moreover, the common genetic polymorphism of CYP7A1 is unlikely to influence the activity of CYP7A1 under normal physiological conditions. OATP1B1 does not play an important role in the in vivo disposition of exogenously administered UDCA.
Resumo:
The Developmental Origins of Health and Disease Hypothesis proposes that adverse health outcomes in adult life are in part programmed during fetal life and infancy. This means that e.g. restricted nutrition during pregnancy programmes the offspring to store fat more effectively, to develop faster and to reach puberty earlier. These adaptations are beneficial in terms of short term survival. However, in developed countries these adaptations often lead to an increased risk of obesity and metabolic disturbances in later life, due to a mismatch between the prenatal and postnatal environment. This thesis aimed to study the role of early growth in people who are obese as adults, but metabolically healthy as well as in those who are normal in weight but metabolically obese. Other study aims were to assess whether physical activity and cardiorespiratory fitness are programmed early in life. The role of socioeconomic status in the development of obesity from a life course setting was also studied. These studies included 2003 men and women born in Helsinki between 1934 and 1944 with detailed information of their prenatal and childhood growth as well as living conditions. They participated in the detailed clinical examination during the years 2001-2004. A sub-group of the subjects participated in the UKK Institute 2-kilometre walk test. Metabolic syndrome was defined according to the 2005 criteria of the International Diabetes Federation. Among the obese men and women 20 % were metabolically healthy. Those with metabolic syndrome did not differ in birth size compared to the healthy ones, but by two years of age, they were lighter and thinner, and remained so up to 11 years. The period when changes in BMIs were predictive of the metabolic syndrome was from birth to 7 years. Of the normal weight individuals 17 % were metabolically obese. Again, there were no differences in birth size. However, by the age 7 years, those men who later developed metabolic syndrome were thinner. Gains in BMI during the first two years of life were protective of the syndrome. Children who were heavier, and especially taller, were more physically active, exercised with higher intensity and had higher cardiorespiratory fitness in their adult life than those who were shorter and thinner as children. Lower educational attainment and lower adult social class were associated with obesity in both men and women. Childhood social class was inversely associated with body mass index only in men while lower household income was associated with higher BMI in women. These results support the role of early life factors in the development of metabolic syndrome and adult life style. Early detection of risk factors predisposing to these conditions is highly relevant from a public health point of view.
Resumo:
Former President of Finland Urho Kekkonen was not only a powerful politician but also a well-known sportsman and keep-fit enthusiast. The president’s sports hobbies were covered and celebrated in the media and thus became an integral part of his public persona. This paper looks at Kekkonen’s athletic and able-bodied image and its significance for his power from the perspective of gender. In his exercise activities, Kekkonen was able to display his bodily prowess and demonstrate his version of masculinity, which emphasized both physical and mental strength. The union of mind and muscle in turn buttressed his political ascendancy. Kekkonen’s athletic body served as a cornerstone of his dominance over his country and, simultaneously, as a shield protecting Finland from both internal and external threats. Furthermore, Kekkonen’s sports performances were essential elements in the myth that was created around the president during his term and which was carefully conserved after his fall from power. Drawing upon scholarship on men and masculinities, this paper reassesses the still-effective mythical image of Kekkonen as an invincible superman. The article reveals the performative nature of his athletic activities and shows that in part, his pre-eminence in them was nothing more than theatre enacted by him and his entourage. Thus, Kekkonen’s superior and super-masculine image was actually surprisingly vulnerable and dependent on the success of the performance. The president’s ageing, in particular, demonstrates the fragility of his displays of prowess, strength and masculinity, and shows how fragile the entanglement of body and power can be.