76 resultados para MOLECULAR-CLONING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disorders resulting from degenerative changes in the nervous system are progressive and incurable. Both environmental and inherited factors affect neuron function, and neurodegenerative diseases are often the sum of both factors. The cellular events leading to neuronal death are still mostly unknown. Monogenic diseases can offer a model for studying the mechanisms of neurodegeneration. Neuronal ceroid lipofuscinoses, or NCLs, are a group of monogenic, recessively inherited diseases affecting mostly children. NCLs cause severe and specific loss of neurons in the central nervous system, resulting in the deterioration of motor and mental skills and leading to premature death. In this thesis, the focus has been on two forms of NCL, the infantile NCL (INCL, CLN1) and the Finnish variant of late infantile NCL (vLINCLFin, CLN5). INCL is caused by mutations in the CLN1 gene encoding for the PPT1 (palmitoyl protein thioesterase 1) enzyme. PPT1 removes a palmitate moiety from proteins in experimental conditions, but its substrates in vivo are not known. In the Finnish variant of late infantile NCL (vLINCLFin), the CLN5 gene is defective, but the function of the encoded CLN5 has remained unknown. The aim of this thesis was to elucidate the disease mechanisms of these two NCL diseases by focusing on the molecular interactions of the defective proteins. In this work, the first interaction partner for PPT1, the mitochondrial F1-ATP synthase, was described. This protein has been linked to HDL metabolism in addition to its well-known role in the mitochondrial energy production. The connection between PPT1 and the F1-ATP synthase was studied utilizing the INCL-disease model, the genetically modified Ppt1-deficient mice. The levels of F1-ATP synthase subunits were increased on the surface of Ppt1-deficient neurons when compared to controls. We also detected several changes in lipid metabolism both at the cellular and systemic levels in Ppt1-deficient mice when compared to controls. The interactions between different NCL proteins were also elucidated. We were able to detect novel interactions between CLN5 and other NCL proteins, and to replicate the previously reported interactions. Some of the novel interactions influenced the intracellular trafficking of the proteins. The multiple interactions between CLN5 and other NCL proteins suggest a connection between the NCL subtypes at the cellular level. The main results of this thesis elicit information about the neuronal function of PPT1. The connection between INCL and neuronal lipid metabolism introduces a new perspective to this rather poorly characterized subject. The evidence of the interactions between NCL proteins provides the basis for future research trying to untangle the NCL disease mechanisms and to develop strategies for therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue is a mosquito-borne viral disease caused by the four dengue virus serotypes (DENV-1-4) and is currently considered as the most important arthropod-borne viral disease in the world. Nearly half of the human population lives in risk areas, and 50-100 million infections occur yearly according to World Health Organization. The disease can vary from a mild febrile disease to severe haemorrhagic fever and shock. A secondary infection with heterologous serotype increases the risk for severe disease outcome. During the last three decades the impact of dengue has dramatically increased in the endemic areas including the tropics and subtropics of the world. The current situation with massive epidemics of severe disease forms has been associated with socio-ecological changes that have increased the transmission and enabled the co-circulation of different serotypes. Consequently, an increase of dengue has also been observed in travelers visiting these areas. Currently approximately 30 cases are diagnosed yearly in Finnish travelers. In travelers dengue is rarely a life-threatening disease, however in the current study, a fatality was documented in a young Finnish patient who experienced a prolonged primary dengue infection. To improve particularly early laboratory diagnostics, a novel real-time RT-PCR method was developed for the detection of DENV-1-4 RNA based on TaqMan chemistry. The method was shown to be sensitive and specific for detecting DENV RNA and suitable for diagnostic use. The newly developed real-time RT-PCR was compared to other available early diagnostic methods including IgM and NS1 antigen detection using a panel of selected patient samples. The results suggest that the best diagnostic rates are achieved by a combination of IgM with RNA or NS1 detection. The dengue virus strains studied here included the first DENV strains isolated from serum samples of Finnish travelers collected in 2000-2005. The results of sequence analysis demonstrated that the 11 isolates included all four DENV serotypes and presented a global sample of DENV strains from different geographical areas including Asia, Africa and South America. In the present study sequence analysis was also carried out for a collection of 23 novel DENV-2 isolates from Venezuelan patients collected in 1999-2005. The Venezuelan DENV-2 exclusively represented the American-Asian genotype, suggesting that no foreign DENV-2 lineages have recently been introduced to the country. The results also suggest that the DENV-2 viruses detected earlier from Venezuela have been maintained in the area where they have evolved into several lineages. This is in contrast to the pattern observed in some other dengue endemic areas, where introductions of novel virus types and lineages are frequently detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome. Finland has the highest documented incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in other Scandinavian countries, Central Europe and the European part of Russia. PUUV belongs to the genus Hantavirus in the family Bunyaviridae. Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved with their carrier rodents for millions of years and these host animals are the evolutionary scene of hantaviruses. In this study, PUUV sequences were recovered from bank voles captured in Denmark and Russian Karelia to study the evolution of PUUV in Scandinavia. Phylogenetic analysis of these strains showed a geographical clustering of genetic variants following the presumable migration pattern of bank voles during the recolonization of Scandinavia after the last ice age approximately 10 000 years ago. The currently known PUUV genome sequences were subjected to in-depth phylogenetic analyses and the results showed that genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV seems to evolve quite slowly following a molecular clock. We also found evidence for recombination in the evolution of some genetic lineages of PUUV. Viral microevolution was studied in controlled virus transmission in colonized bank voles and changes in quasispecies dynamics were recorded as the virus was transmitted from one animal to another. We witnessed PUUV evolution in vivo, as one synonymous mutation became repeatedly fixed in the viral genome during the experiment. The detailed knowledge on the PUUV diversity was used to establish new sensitive and specific detection methods for this virus. Direct viral invasion of the hypophysis was demonstrated for the first time in a lethal case of NE. PUUV detection was done by immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by age of onset at 6-15 years, stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and a progressive course. Mutations in the cystatin B (CSTB) gene underlie EPM1. The most common mutation underlying EPM1 is a dodecamer repeat expansion in the promoter region of CSTB. In addition, nine other mutations have been identified. CSTB, a cysteine protease inhibitor, is a ubiquitously expressed inhibitor of cathepsins, but its physiological function is unknown. The purpose of this study was to investigate CSTB gene expression and CSTB protein function in normal and pathological conditions. The basal CSTB promoter was mapped and characterized using different promoter-luciferase gene constructs. The binding activity of transcription factors to one ARE half, five Sp1 and four AP1 sites in the CSTB promoter was demonstrated. The CSTB promoter activity was clearly decreased using a CSTB promoter with "premutation" repeat expansions and in individuals with alike expansions. The expression of CSTB mRNA and protein was markedly reduced in patient cells. The endogenous CSTB protein localized to the nucleus, cytoplasm and lysosomes, and in differentiated cells merely to the cytoplasm. This suggests that the subcellular distribution of CSTB is dependent on the differentation status of the cells. The proteins representing patient missense mutations failed to associate with lysosomes, implying the importance of the lysosomal association for the proper physiological function of CSTB. Several alternatively spliced CSTB isoforms were identified. Of these CSTB2 was widely expressed with very low levels whereas the other alternatively spliced forms seemed to have limited tissue expression. In patients CSTB2 expression was reduced similarly to that of CSTB. The physiological relevance of CSTB alternative splicing remains unknown. The mouse Cstb transcript was shown to be present in all embryonic stages and adult tissues examined. The expression was highest at embryonic day 7 and in thymus, as well as in postnatal brain in the cortex, caudate putamen, thalamus, hippocampus, and in the Purkinje cell layer of the cerebellum. Our data implies that CSTB expression is tightly temporally and spatially regulated. The data presented in my thesis lay the basis for further understanding of the role of CSTB in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epilysin (MMP-28) is the most recently identified member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together these enzymes are capable of degrading almost all components of the extracellular matrix (ECM) and are thus involved in important biological processes such as development, wound healing and immune functions, but also in pathological processes such as tumor invasion, metastasis and arthritis. MMPs do not act solely by degrading the ECM. They also regulate cell behavior by releasing growth factors and biologically active peptides from the ECM, by modulating cell surface receptors and adhesion molecules and by regulating the activity of many important mediators in inflammatory pathways. The aim of this study was to define the unique role of epilysin within the MMP-family, to elucidate how and when it is expressed and how its catalytic activity is regulated. To gain information on its essential functions and substrates, the specific aim was to characterize how epilysin affects the phenotype of epithelial cells, where it is biologically expressed. During the course of the study we found that the epilysin promoter contains a well conserved GT-box that is essential for the basic expression of this gene. Transcription factors Sp1 and Sp3 bind this sequence and could hence regulate both the basic and cell type and differentiation stage specific expression of epilysin. We cloned mouse epilysin cDNA and found that epilysin is well conserved between human and mouse genomes and that epilysin is glycosylated and activated by furin. Similarly to in human tissues, epilysin is normally expressed in a number of mouse tissues. The expression pattern differs from most other MMPs, which are expressed only in response to injury or inflammation and in pathological processes like cancer. These findings implicate that epilysin could be involved in tissue homeostasis, perhaps fine-tuning the phenotype of epithelial cells according to signals from the ECM. In view of these results, it was unexpected to find that epilysin can induce a stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor b (TGF-b) was recognized as a crucial mediator of this process, which was characterized by the loss of E-cadherin mediated cell-cell adhesion, elevated expression of gelatinase B and MT1-MMP and increased cell migration and invasion into collagen I gels. We also observed that epilysin is bound to the surface of epithelial cells and that this interaction is lost upon cell transformation and is susceptible to degradation by membrane type-1-MMP (MT1-MMP). The wide expression of epilysin under physiological conditions implicates that its effects on epithelial cell phenotype in vivo are not as dramatic as seen in our in vitro cell system. Nevertheless, current results indicate a possible interaction between epilysin and TGF-b also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-b signaling and cell motility. Epilysin may thus play an important role in TGF-b regulated events such as wound healing and inflammation, processes where involvement of epilysin has been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for the xylE gene were designed for TOL plasmid detection. Amplified enzyme-coding DNA restriction analysis (AEDRA) with AluI was used to profile both TOL plasmids (xylE primers) and, in general, aromatics-degrading plasmids (C230 primers). The sensitivity of the direct monitoring of TOL plasmids in soil was enhanced by nested C23O-xylE-PCR. Rhizosphere bacteria were isolated from the greenhouse and field lysimeter experiments. High genetic diversity was observed among the 50 isolated, m-toluate tolerating rhizosphere bacteria in the form of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. The inoculum Pseudomonas putida PaW85/pWW0 was not found in the rhizosphere samples. Even if there were no ecological niches available for the bioaugmentation bacterium itself, its conjugative catabolic plasmid might have had some additional value for other bacterial species and thus, for rhizoremediation. Only 10 to 20% of the isolated, m-toluate tolerating bacterial strains were also able to degrade m-toluate. TOL plasmids were a major group of catabolic plasmids among these bacteria. The ability to degrade m-toluate by using enzymes encoded by a TOL plasmid was detected only in species of the genus Pseudomonas, and the best m-toluate degraders were these Pseudomonas species. Strain-specific differences in degradation abilities were found for P.oryzihabitans and P. migulae: some of these strains harbored a TOL plasmid - a new finding observed in this work, indicating putative horizontal plasmid transfer in the rhizosphere. One P. oryzihabitans strain harbored the pWW0 plasmid that had probably conjugated from the bioaugmentation Pseudomonas. Some P. migulae and P. oryzihabitans strains seemed to harbor both the pWW0- and the pDK1-type TOL plasmid. Alternatively, they might have harbored a TOL plasmid with both the pWW0- and the pDK1-type xylE gene. The breakdown of m-toluate by gram-negative bacteria was not restricted to the TOL pathway. Also some gram-positive Rhodococcus erythropolis and Arthrobacter aurescens strains were able to degrade m-toluate in the absence of a TOL plasmid. Three aspects of the rhizosphere effect of G. orientalis were manifested in oil-contaminated soil in the field: 1) G. orientalis and Pseudomonas bioaugmentation increased the amount of rhizosphere bacteria. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria indicating an increase in degradation potential. 2) Also the bacterial diversity, when measured as the amount of ribotypes, was increased in the Galega rhizosphere with or without Pseudomonas bioaugmentation. However, the diversity of m-toluate utilizing bacteria did not significantly increase. At the community level, by using the 16S rRNA gene PCR-DGGE method, the highest diversity of species was also observed in vegetated soils compared with non-vegetated soils. Diversified communities may best guarantee the overall success in rhizoremediation by offering various genetic machineries for catabolic processes. 3) At the end of the experiment, no TOL plasmid could be detected by direct DNA analysis in soil treated with both G. orientalis and Pseudomonas. The detection limit for TOL plasmids was encountered indicating decreased amount of degradation plasmids and thus, the success of rhizoremediation. The use of G. orientalis for rhizoremediation is unique. In this thesis new information was obtained about the rhizosphere effect of Galega orientalis in BTEX contaminated soils. The molecular biomonitoring methods can be applied for several purposes within environmental biotechnology, such as for evaluating the intrinsic biodegradation potential, monitoring the enhanced bioremediation, and estimating the success of bioremediation. Environmental protection by using nature's own resources and thus, acting according to the principle of sustainable development, would be both economically and environmentally beneficial for society. Keywords: molecular biomonitoring, genetic fingerprinting, soil bacteria, bacterial diversity, TOL plasmid, catabolic genes, horizontal gene transfer, rhizoremediation, rhizosphere effect, Galega orientalis, aerobic biodegradation, petroleum hydrocarbons, BTEX

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basidiomycetous white-rot fungi are the only organisms that can efficiently decompose all the components of wood. Moreover, white-rot fungi possess the ability to mineralize recalcitrant lignin polymer with their extracellular, oxidative lignin-modifying enzymes (LMEs), i.e. laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP). Within one white-rot fungal species LMEs are typically present as several isozymes encoded by multiple genes. This study focused on two effi cient lignin-degrading white-rot fungal species, Phlebia radiata and Dichomitus squalens. Molecular level knowledge of the LMEs of the Finnish isolate P. radiata FBCC43 (79, ATCC 64658) was complemented with cloning and characterization of a new laccase (Pr-lac2), two new LiP-encoding genes (Pr-lip1, Pr-lip4), and Pr-lip3 gene that has been previously described only at cDNAlevel. Also, two laccase-encoding genes (Ds-lac3, Ds-lac4) of D. squalens were cloned and characterized for the first time. Phylogenetic analysis revealed close evolutionary relationships between the P. radiata LiP isozymes. Distinct protein phylogeny for both P. radiata and D. squalens laccases suggested different physiological functions for the corresponding enzymes. Supplementation of P. radiata liquid culture medium with excess Cu2+ notably increased laccase activity and good fungal growth was achieved in complex medium rich with organic nitrogen. Wood is the natural substrate of lignin-degrading white-rot fungi, supporting production of enzymes and metabolites needed for fungal growth and the breakdown of lignocellulose. In this work, emphasis was on solid-state wood or wood-containing cultures that mimic the natural growth conditions of white-rot fungi. Transcript analyses showed that wood promoted expression of all the presently known LME-encoding genes of P. radiata and laccase-encoding genes of D. squalens. Expression of the studied individual LME-encoding genes of P. radiata and D. squalens was unequal in transcript quantities and apparently time-dependent, thus suggesting the importance of several distinct LMEs within one fungal species. In addition to LMEs, white-rot fungi secrete other compounds that are important in decomposition of wood and lignin. One of these compounds is oxalic acid, which is a common metabolite of wood-rotting fungi. Fungi produce also oxalic-acid degrading enzymes of which the most widespread is oxalate decarboxylase (ODC). However, the role of ODC in fungi is still ambiguous with propositions from regulation of intra and extracellular oxalic acid levels to a function in primary growth and concomitant production of ATP. In this study, intracellular ODC activity was detected in four white-rot fungal species, and D. squalens showed the highest ODC activity upon exposure to oxalic acid. Oxalic acid was the most common organic acid secreted by the ODC-positive white-rot fungi and the only organic acid detected in wood cultures. The ODC-encoding gene Ds-odc was cloned from two strains of D. squalens showing the first characterization of an odc-gene from a white-rot polypore species. Biochemical properties of the D. squalens ODC resembled those described for other basidiomycete ODCs. However, the translated amino acid sequence of Ds-odc has a novel N-terminal primary structure with a repetitive Ala-Ser-rich region of ca 60 amino acid residues in length. Expression of the Ds-odc transcripts suggested a constitutive metabolic role for the corresponding ODC enzyme. According to the results, it is proposed that ODC may have an essential implication for the growth and basic metabolism of wood-decaying fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suurin osa luonnossa havaitsemistamme mikrobeista on sellaisia, joita emme edelleenkään osaa kasvattaa laboratorio-oloissa, vaikka tietomme mikrobien monimuotoisuudesta paranevat koko ajan. Luonnontilaisen mikrobieliöstön kokoonpano eri ympäristöissä on paljolti epäselvä ja ymmärrämme vielä hyvin puutteellisesti mikrobien ekologiaa ja niiden rooleja eliöyhteisöissä. Nykyaikaiset molekulaariset tutkimusmenetelmät auttavat selvittämään mikrobien monimuotoisuutta kokonaisvaltaisesti ja nopeasti. Ympäristöstä kemiallisesti puhdistetut ribosomaalista RNA:ta koodaavat geenit edustavat periaatteessa kaikkia eliöyhteisön geneettisesti toisistaan poikkeavia eliöitä. Niistä voidaan valikoida halutut genomit jatkotutkimuksia varten. Uusien menetelmien käyttö on tuonut esiin sen merkittävän seikan, että "tavanomaisten" elinympäristöjen eliöyhteisöihin kuuluu suuri joukko entuudestaan tuntemattomia arkkieliöitä. Aiemmin kuviteltiin, että arkkieliöt asuttavat vain sellaisia "epätavallisia" tai "äärimmäisiä" elinympäristöjä, joita luonnehtii joku seuraavista ominaisuuksista: hyvin korkea lämpötila, korkea suolapitoisuus, korkea happamuus tai emäksisyys, hapettomuus. Tutkijat ovat viimeisen noin kymmenen vuoden aikana osoittaneet, että arkkieliöt asuttavat hyvin monenlaisia kylmän ja lauhkean vyöhykkeen ympäristöjä, yhtä hyvin maaperää kuin suolaisen ja makean veden pohjaa tai pintakerroksia. Nämä löydöt ovat avanneet uuden alun arkkieliöiden tutkimukselle, erityisesti sen selvittämiselle, mitkä ovat niiden fysiologiset ja ekologiset roolit monimuotoisissa mikrobiyhteisöissä. Tämä väitöskirja kuvaa entuudestaan tuntemattomien arkkieliöiden löytymistä havumetsävyöhykkeen metsämaasta. Arkkieliöitä löytyi myös lauhkean vyöhykkeen vuorovesialueelta, murtoveden huuhtelemasta pohjasta. Nämä löydöt ovat perustavalaatuisia vuorovesialueen eliöyhteisöjen ymmärtämiseksi. Suomalaisen metsäjärven vedestä määritettiin molempien arkkieliöiden pääryhmien - tieteellisiltä nimiltään Crenarchaeota ja Euryarchaeota - edustajia. Euryarchaeota-ryhmän edustajia voitiin havainnoida myös fluoresenssi-mikroskopoinnilla. Löydöt viittaavat siihen, että arkkieliöillä on oma biogeokemiallinen roolinsa makeanveden ravintoketjujen hiilen käytössä. Tässä työssä määritetyt uudet arkkieliöiden genomien nukleotidisekvenssit on toimitettu ARB-tietokantaan, jonka kasvava vertailuaineisto edelleen parantaa uusien arkkieliösekvenssien analyysiä ja auttaa hybridisaatiokoetinten ja polymeraasiketjureaktioalukkeiden suunnittelussa ja arvioinnissa. Tässä väitöskirjassa esitellyt tulokset yhdessä lukuisien vesi-, maaperä- ja muiden ympäristöjen arkkieliöitä käsittelevien julkaisujen kanssa osoittavat, että arkkieliöt asuttavat monia erilaisia elinympäristöjä ja että ne ovat ekologisesti paljon menestyneempiä, kuin tieteenalalla on kuviteltu. Voimme olettaa, että heti kun joitain näistä eliöistä onnistutaan kasvattamaan ja ylläpitämään laboratorio-oloissa, niiden joukosta löydetään aivan uusia, entuudestaan tuntemattomia fysiologisia fenotyyppejä, jotka avaavat mielenkiintoisia näkymiä aineenvaihdunnan ja perinnöllisten ominaisuuksien tutkimukselle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the classification used for cyanobacteria is based mainly on morphology. In many cases the classification is known to be incongruent with the phylogeny of cyanobacteria. The evaluation of this classification is complicated by the fact that numerous strains are only described morphologically and have not been isolated. Moreover, the phenotype of many cyanobacterial strains alters during prolonged laboratory cultivation. In this thesis, cyanobacterial strains were isolated from lakes (mainly Lake Tuusulanjärvi) and both morphology and phylogeny of the isolates were investigated. The cyanobacterial community composition in Lake Tuusulanjärvi was followed for two years in order to relate the success of cyanobacterial phenotypes and genotypes to environmental conditions. In addition, molecular biological methods were compared with traditional microscopic enumeration and their ability and usefulness in describing the cyanobacterial diversity was evaluated. The Anabaena, Aphanizomenon, and Trichormus strains were genetically heterogeneous and polyphyletic. The phylogenetic relationships of the heterocytous cyanobacteria were not congruent with their classification. In contrast to heterocytous cyanobacteria, the phylogenetic relationships of the Snowella and Woronichinia strains, which had not been studied before this thesis, reflected the morphology of strains and followed their current classification. The Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. In addition, a new cluster of thin, filamentous cyanobacterial strains identified as Limnothrix redekei was revealed. This cluster was not closely related to any other known cyanobacteria. The cyanobacterial community composition in Lake Tuusulanjärvi was studied with molecular methods [denaturant gradient gel electrophoresis (DGGE) and cloning of the 16S rRNA gene], through enumerations of cyanobacteria under microscope, and by strain isolations. Microcystis, Anabaena/Aphanizomenon, and Synechococcus were the major groups in the cyanobacterial community in Lake Tuusulanjärvi during the two-year monitoring period. These groups showed seasonal succession, and their success was related to different environmental conditions. The major groups of the cyanobacterial community were detected by all used methods. However, cloning gave higher estimates than microscopy for the proportions of heterocytous cyanobacteria and Synechococcus. The differences were probably caused by the high 16S rRNA gene copy numbers in heterotrophic cyanobacteria and by problems in the identification and detection of unicellular cyanobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.