93 resultados para Cellular factors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with algal species occurring commonly in the Baltic Sea: haptophyte Prymnesium parvum, dinoflagellates Dinophysis acuminata, D. norvegica and D. rotundata, and cyanobacterium Nodularia spumigena. The hypotheses are connected to the toxicity of the species, to the factors determining toxicity, to the consequences of toxicity and to the transfer of toxins in the aquatic food web. Since the Baltic Sea is severely eutrophicated, the fast-growing haptophytes have potential in causing toxic blooms. In our studies, the toxicity (as haemolytic activity) of the haptophyte P. parvum was highest under phosphorus-limited conditions, but the cells were toxic also under nitrogen limitation and under nutrient-balanced growth conditions. The cellular nutrient ratios were tightly related to the toxicity. The stoichiometric flexibility for cellular phosphorus quota was higher than for nitrogen, and nitrogen limitation led to decreased biomass. Negative allelopathic effects on another algae (Rhodomonas salina) could be observed already at low P. parvum cell densities, whereas immediate lysis of R. salina cells occurred at P. parvum cell densities corresponding to natural blooms. Release of dissolved organic carbon from the R. salina cells was measured within 30 minutes, and an increase in bacterial number and biomass was measured within 23 h. Because of the allelopathic effect, formation of a P. parvum bloom may accelerate after a critical cell density is reached and the competing species are eliminated. A P. parvum bloom indirectly stimulates bacterial growth, and alters the functioning of the planktonic food web by increasing the carbon transfer through the microbial loop. Our results were the first reports on DSP toxins in Dinophysis cells in the Gulf of Finland and on PTX-2 in the Baltic Sea. Cellular toxin contents in Dinophysis spp. ranged from 0.2 to 149 pg DTX-1 cell-1 and from 1.6 to 19.9 pg PTX-2 cell-1 in the Gulf of Finland. D. norvegica was found mainly around the thermocline (max. 200 cells L-1), whereas D. acuminata was found in the whole mixed layer (max. 7 280 cells L-1). Toxins in the sediment trap corresponded to 1 % of DTX-1 and 0.01 % PTX-2 of the DSP pool in the suspended matter. This indicates that the majority of the DSP toxins does not enter the benthic community, but is either decomposed in the water column, or transferred to higher trophic levels in the planktonic food chain. We found that nodularin, produced by Nodularia spumigena, was transferred to the copepod Eurytemora affinis through three pathways: by grazing on filaments of small Nodularia, directly from the dissolved pool, and through the microbial food web by copepods grazing on ciliates, dinoflagellates and heterotrophic nanoflagellates. The estimated proportion of the microbial food web in nodularin transfer was 22-45 % and 71-76 % in our two experiments, respectively. This highlights the potential role of the microbial food web in the transfer of toxins in the planktonic food web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors play essential role in the development and functioning of the nervous system and other organs. Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands (GFLs) are of particular interest because they promote the survival of dopaminergic neurons in vitro, in Parkinson s disease animal models and in patients. GDNF is also a potent survival factor for the central motoneurons and thus is considered as a potential lead for the treatment of amyotrophic lateral sclerosis. The survival promoting receptor complex for GFLs consists of a ligand-specific co-receptor, GFRα and a signal transducing module, receptor tyrosine kinase RET. At least GDNF and persephin, a GFL, have established functions outside central nervous system. GDNF is crucial for enteric nervous system and kidney development as well as for spermatogenesis. Persephin controls calcitonin secretion. Communication between cells often occurs in the extracellular matrix (ECM), a meshwork, which is secreted and deposited by the cells and is mainly composed of fibrillar proteins and polymerized sugars. We evaluated the relationship between GFLs and extracellular matrix components and demonstrated that three GFLs - GDNF, neurturin and artemin bind heparan sulfates with nanomolar affinities. The fourth member of the family - persephin binds these polysaccharides thousand times less tightly. GDNF, neurturin and artemin also bind with high affinity to heparan sulfate proteoglycan (HSPG) isolated from the nervous system, syndecan-3. GDNF signals through HSPGs, evoking Src family kinase activation. This signaling induces cell spreading, hippocampal neurite outgrowth in vitro and cellular migration. Specifically, GDNF signaling through syndecan-3 is important for embryonic cortical neuron migration. Syndecan-3-deficient mice, similarly to mice lacking GDNF, have less GABAergic neurons in their cortex, as compared to the wild-type mice. This fact provides indirect evidence that GDNF interaction with syndecan-3 is important for cortical brain development. Noteworthy, in non-neuronal tissues GFLs may signal via other syndecans. We also present the structural model for a GDNF co-receptor, GFRα1. The X-ray structure of the GFRα1 domain 3 was solved with 1.8 Å resolution, revealing a new protein fold. Later we also solved the structure of the truncated GFRα1 in the complex with GDNF and this model was confirmed by site-directed mutagenesis. In summary, our work contributed to the structural characterization of GFRα-based receptor complex and revealed a new receptor for GDNF, neurturin and artemin the HSPG syndecan-3. This information is critically important for the development of GFRα/RET agonists for the treatment of neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four GDNF ligands (GDNF, neurturin, artemin and persephin), and mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) protect midbrain dopaminergic neurons that degenerate in Parkinson's disease. Each GDNF ligand binds a specific coreceptor GDNF family receptor α (GFRα), leading to the formation of a heterotetramer complex, which then interacts with receptor tyrosine kinase RET, the signalling receptor. The present thesis describes the structural and biochemical characterization of the GDNF2-GFRα12 complex and the MANF and CDNF proteins. Previous and current mutation data and comparison between GDNF-GFRα1 and artemin-GFRα3 binding interfaces show that N162GFRα1, I175GFRα1, V230GFRα1, Y120GDNF and L114GDNF are the specificity determinants among different ligand-coreceptor pairs. The structure suggests that sucrose octasulphate, a heparin mimic, interacts with a region R190-K202 within domain 2 of GFRα1. Mutating these residues on the GFRα1 surface, which are not in the GDNF binding region, affected RET phosphorylation, which provides a putative RET binding region in domain 2 and 3 of GFRα1. The structural comparison of the GDNF-GFRα1 and artemin-GFRα3 complexes shows a difference in bend angle between the ligand monomers. This variation in bend angle of the ligand may affect the kinetics of RET phosphorylation. To confirm that the difference is not due to crystallization artefacts, I crystallized the GDNF-GFRα1 complex without SOS in different cell dimensions. The structure of the second GDNF-GFRα1 complex is very similar to the previous one, suggesting that the difference between the artemin-GFRα3 and GDNF-GFRα1 complexes are intrinsic, not due to crystal packing. Finally, MANF and CDNF are bifunctional proteins with extracellular neurotrophic activity and ER resident cytoprotective role. The crystal structures of MANF and CDNF are presented here. Intriguingly, the structures of both the neurotrophic factors do not show structural similarity to any of previously known growth factor superfamilies; instead they are similar to saposins, the lipid-binding proteins. The N-terminal domain of MANF and CDNF contain conserved lysines and arginines on its surface, which may interact with negatively charged head groups of phospholipids, as saposins do. Thus MANF and CDNF may provide neurotrophic activities by interacting with a lipo-receptor. The structure of MANF shows a CXXC motif forming internal disulphide bridge in the natively unfolded C-terminus. This motif is common to reductases and disulphide isomerases. It is thus tempting to speculate that the CXXC motif of MANF and CDNF may be involved in oxidative protein folding, which may explain its cytoprotective role in the ER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying neurodegeneration provides an opportunity to gain insights into normal cell physiology, and not just pathophysiology. In this thesis work the focus is on Infantile Neuronal Ceroid Lipofuscinosis (INCL). It is a recessively inherited lysosomal storage disorder. The disease belongs to the neuronal ceroid lipofuscinoses (NCLs), a group of common progressive neurodegenerative diseases of the childhood. Characteristic accumulation of autofluorescent storage material is seen in most tissues but only neurons of the central nervous system are damaged and eventually lost during the course of the disease leaving most other cell types unaffected. The disease is caused by mutations in the CLN1 gene, but the physiological function of the corresponding protein the palmitoyl protein thioesterase (PPT1) has remained elusive. The aim of this thesis work was to shed light on the molecular and cell biological mechanisms behind INCL. This study pinpointed the localization of PPT1 in axonal presynapses of neurons. It also established the role of PPT1 in early neuronal maturation as well as importance in mature neuronal synapses. This study revealed an endocytic defect in INCL patient cells manifesting itself as delayed trafficking of receptor and non-receptor mediated endocytic markers. Furthermore, this study was the first to connect the INCL storage proteins the sphingolipid activator proteins (SAPs) A and D to pathological events on the cellular level. Abnormal endocytic processing and intracellular re-localization was demonstrated in patient cells and disease model knock-out mouse neurons. To identify early affected cellular and metabolic pathways in INCL, knock-out mouse neurons were studied by global transcript profiling and functional analysis. The gene expression analysis revealed changes in neuronal maturation and cell communication strongly associated with the regulated secretory system. Furthermore, cholesterol metabolic pathways were found to be affected. Functional studies with the knock-out mouse model revealed abnormalities in neuronal maturation as well as key neuronal functions including abnormalities in intracellular calcium homeostasis and cholesterol metabolism. Together the findings, introduced in this thesis work, support the essential role of PPT1 in developing neurons as well as synaptic sites of mature neurons. Results of this thesis also elucidate early events in INCL pathogenesis revealing defective pathways ultimately leading to the neurodegenerative process. These results contribute to the understanding of the vital physiological function of PPT1 and broader knowledge of common cellular mechanisms behind neurodegeneration. These results add to the knowledge of these severe diseases offering basis for new approaches in treatment strategies.