71 resultados para Velopharyngeal dysfunction
Resumo:
Conventional invasive coronary angiography is the clinical gold standard for detecting of coronary artery stenoses. Noninvasive multidetector computed tomography (MDCT) in combination with retrospective ECG gating has recently been shown to permit visualization of the coronary artery lumen and detection of coronary artery stenoses. Single photon emission tomography (SPECT) perfusion imaging has been considered the reference method for evaluation of nonviable myocardium, but magnetic resonance imaging (MRI) can accurately depict structure, function, effusion, and myocardial viability, with an overall capacity unmatched by any other single imaging modality. Magnetocardiography (MCG) provides noninvasively information about myocardial excitation propagation and repolarization without the use of electrodes. This evolving technique may be considered the magnetic equivalent to electrocardiography. The aim of the present series of studies was to evaluate changes in the myocardium assessed with SPECT and MRI caused by coronary artery disease, examine the capability of multidetector computed tomography coronary angiography (MDCT-CA) to detect significant stenoses in the coronary arteries, and MCG to assess remote myocardial infarctions. Our study showed that in severe, progressing coronary artery disease laser treatment does not improve global left ventricular function or myocardial perfusion, but it does preserve systolic wall thickening in fixed defects (scar). It also prevents changes from ischemic myocardial regions to scar. The MCG repolarization variables are informative in remote myocardial infarction, and may perform as well as the conventional QRS criteria in detection of healed myocardial infarction. These STT abnormalities are more pronounced in patients with Q-wave infarction than in patients with non-Q-wave infarctions. MDCT-CA had a sensitivity of 82%, a specificity of 94%, a positive predictive value of 79%, and a negative predictive value of 95% for stenoses over 50% in the main coronary arteries as compared with conventional coronary angiography in patients with known coronary artery disease. Left ventricular wall dysfunction, perfusion defects, and infarctions were detected in 50-78% of sectors assigned to calcifications or stenoses, but also in sectors supplied by normally perfused coronary arteries. Our study showed a low sensitivity (sensitivity 63%) in detecting obstructive coronary artery disease assessed by MDCT in patients with severe aortic stenosis. Massive calcifications complicated correct assessment of the lumen of coronary arteries.
Resumo:
Cavernomas are rare neurovascular lesions, encountered in up to 10% of patients harboring vascular abnormalities of the CNS. Cavernomas consist of dilated thin-walled sinusoids or caverns covered by a single layer of endothelium. Due to advancements in neuroradiology, the number of cavernoma patients coming to be evaluated in neurosurgical practice is increasing. In the present work, we summarized our results on the treatment of cavernomas. Particular attention was paid to uncommon locations or insufficiently investigated cavernomas, including 1. Intraventricular cavernomas; 2. Multiple cavernomas; 3. Spinal cavernomas; and 4. Temporal lobe cavernomas. After analyzing the patient series with these lesions, we concluded that: 1. IVCs are characterized by a high tendency to cause repetitive hemorrhages in a short period of time after the first event. In most patients, hemorrhages were not life-threatening. Surgery is indicated when re-bleedings are frequent and the mass-effect causes progressive neurological deterioration. Modern microsurgical techniques allow safe removal of the IVC, but surgery on fourth ventricle cavernomas carries increased risk of postoperative cranial nerve deficits. 2. In MC cases, when the cavernoma bleeds or generates drug-resistant epilepsy, microsurgical removal of the symptomatic lesion is beneficial to patients. In our series, surgical removal of the most active cavernoma usually the biggest lesion with signs of recent hemorrhage - was safe and prevented further bleedings. Epilepsy outcome showed the effectiveness of active treatment of MCs. However, due to the remaining cavernomas, epileptogenic activity can persist postoperatively, frequently necessitating long-term use of antiepileptic drugs. 3. Spinal cavernomas can cause severe neurological deterioration due to low tolerance of the spinal cord to mass-effect with progressive myelopathy. When aggravated by extralesional massive hemorrhage, neurological decline is usually acute and requires immediate treatment. Microsurgical removal of a cavernoma is effective and safe, improving neurological deficits. Sensorimotor deficits and pain improved postoperatively at a high rate, whereas bladder dysfunction remained essentially unchanged, causing social discomfort to patients. 4. Microsurgical removal of temporal lobe cavernomas is beneficial for patents suffering from drug-resistant epilepsy. In our series, 69% of patients with this condition became seizure-free postoperatively. Duration of epilepsy did not correlate with seizure prognosis. The most frequent disabling symptom at follow-up was memory disorder, considered to be the result of a complex interplay between chronic epilepsy and possible damage to the temporal lobe during surgery.
Resumo:
Infertility treatments are relatively easily available in most Western countries today, but the psychological consequences of these high-tech treatments have scarcely been addressed. The purpose of this controlled longitudinal study was to explore the early environment of the infant born by assisted reproductive treatment (ART). We focused on the parents mental well-being, marital relations and experience of parenting. In addition to this, we assessed parent child interaction and parents mental representations of their child after long-standing infertility and several unsuccessful ART attempts. The subjects were infertile couples who achieved a singleton pregnancy by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). The control group comprised of spontaneously conceiving couples with singleton pregnancies. ART women showed fewer depressive symptoms than controls during pregnancy and after delivery, but the difference vanished by the end of the child s first year. ART men consistently had lower levels of anxiety symptoms, sleeping difficulties, and social dysfunction than control men. Control women experienced a decrease in dyadic consensus during the child s first year, which did not happen among ART women. After the child was born, ART men reported a higher level of sexual affection compared with control men. Psychic symptoms and stressful life events were differently related to marital relations in ART and control groups. The parenting experiences of ART mothers were in general at a higher level, compared with controls, and they changed in a positive direction during the child s first year. Fathering experiences were at the same level in both groups, and they changed positively in both groups by the end of the child s first year. The parenting experiences of ART mothers and fathers were more resilient to certain child-related stressors than those of control group. Both mothers and fathers with long-term infertility showed more sensitive behaviour with their child in toddler-age than in infancy. Correspondingly, children s cooperation increased. Mothers often mentioned a fear of miscarriage and difficulty in creating representations of the child during pregnancy. Descriptions of the infants were mainly rich, vivid and loaded with positive features. In conclusion, ART parents in general seem to adapt well to the transition to parenthood. Former infertility and ART do not seem to constitute a risk for parents mental health, marital relations or experience of parenting. Even longstanding infertility with several unsuccessful treatment attempts did not create a risk as regards parenting behaviour or parents mental representations of their child. In this group, however, women were found to have fear for losing the child and difficulty in creating representations of the child during pregnancy, which in some cases may indicate need for psychosocial support. Even though our results are encouraging, infertility and infertility treatments are generally considered as a stressful experience. It is a challenge for health authorities to recognize those couples who need professional help to overcome the distressing experiences of infertility and ART.
Resumo:
Mitochondrial diseases are caused by disturbances of the energy metabolism. The disorders range from severe childhood neurological diseases to muscle diseases of adults. Recently, mitochondrial dysfunction has also been found in Parkinson s disease, diabetes, certain types of cancer and premature aging. Mitochondria are the power plants of the cell but they also participate in the regulation of cell growth, signaling and cell death. Mitochondria have their own genetic material, mtDNA, which contains the genetic instructions for cellular respiration. Single cell may host thousands of mitochondria and several mtDNA molecules may reside inside single mitochondrion. All proteins needed for mtDNA maintenance are, however, encoded by the nuclear genome, and therefore, mutations of the corresponding genes can also cause mitochondrial disease. We have here studied the function of mitochondrial helicase Twinkle. Our research group has previously identified nuclear Twinkle gene mutations underlying an inherited adult-onset disorder, progressive external ophthalmoplegia (PEO). Characteristic for the PEO disease is the accumulation of multiple mtDNA deletions in tissues such as the muscle and brain. In this study, we have shown that Twinkle helicase is essential for mtDNA maintenance and that it is capable of regulating mtDNA copy number. Our results support the role of Twinkle as the mtDNA replication helicase. No cure is available for mitochondrial disease. Good disease models are needed for studies of the cause of disease and its progression and for treatment trials. Such disease model, which replicates the key features of the PEO disease, has been generated in this study. The model allows for careful inspection of how Twinkle mutations lead to mtDNA deletions and further causes the PEO disease. This model will be utilized in a range of studies addressing the delay of the disease onset and progression and in subsequent treatment trials. In conclusion, in this thesis fundamental knowledge of the function of the mitochondrial helicase Twinkle was gained. In addition, the first model for adult-onset mitochondrial disease was generated.
Resumo:
Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.
Resumo:
Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.
Resumo:
Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.
Resumo:
Serum parathyroid hormone (PTH) and vitamin D are the major regulators of extracellular calcium homeostasis. The inverse association between PTH and vitamin D and the common age-related elevation of the PTH concentration are well known phenomena. However, the confounding or modifying factors of this relationship and their impact on the response of PTH levels to vitamin D supplementation need further investigation. Clinical conditions such as primary hyperparathyroidism (PHPT), renal failure and vitamin D deficiency, characterized by an elevation of the PTH concentration, have been associated with impaired long-term health outcomes. Curative treatments for these conditions have also been shown to decreases PTH concentration and attenuate some of the adverse health effects. In PHPT it has also been commonly held that hypercalcaemia, the other hallmark of the disease, is the key mediator of the adverse health outcomes. In chronic kidney disease the systemic vascular disease has been proposed to have the most important impact on general health. Some evidence also indicates that vitamin D may have significant extraskeletal actions. However, the frank elevation of PTH concentration seen in advanced PHPT and in end-stage renal failure have also been suggested to be at least partly causally related to an increased risk of death as well as cognitive dysfunction. However, the exact mechanisms have remained unclear. Furthermore, the predictive value of elevated PTH in unselected older populations has been less well studied. The studies presented in this thesis investigated the impact of age and mobility on the responses of PTH levels to vitamin D deficiency and supplementation. Furthermore, the predictive value of PTH for long-term survival and cognitive decline was addressed in an unselected population of older people. The hypothesis was that age and chronic immobility are related to a persistently blunted elevation of PTH concentration, even in the presence of chronic vitamin D deficiency, and to attenuated responses of PTH to vitamin D supplementation. It was also further hypothesized that a slightly elevated or even high-normal PTH concentration is an independent indicator of an increased risk of death and cognitive decline in the general aged population. The data of this thesis are based on three samples: a meta-analysis of published vitamin D supplementation trials, a randomized placebo controlled six-month vitamin D supplementation trial, and a longitudinal prospective cohort study on a general aged population. Based on a PubMed search, a meta-analysis of 52 clinical trials with 6 290 adult participants was performed to evaluate the impact of age and immobility on the responses of PTH to 25-OHD levels and vitamin D supplementation. A total of 218 chronically immobile, very old inpatients were also enrolled into a vitamin D supplementation trial. Mortality data for these patients was also collected after a two-year follow-up. Finally, data from the Helsinki Aging Study, which followed three random age cohorts (75, 80 and 85 years) until death in almost all subjects, was used to evaluate the predictive value of PTH for long-term survival and cognitive decline. This series of studies demonstrated that in older people without overt renal failure or severe hypercalcaemia, serum 25-OHD and PTH were closely associated, but this relationship was also affected by age and immobility. Furthermore, a substantial proportion of old chronically bedridden patients did not respond to vitamin D deficiency by elevating PTH, and the effect of a high-dose (1200 IU/d) six-month cholecalciferol supplementation on the PTH concentration was minor. This study demonstrated longitudinally for the first time that the blunted PTH also persisted over time. Even a subtle elevation of PTH to high-normal levels predicted impaired long-term health outcomes. Slightly elevated PTH concentrations indicated an increased risk of clinically significant cognitive decline and death during the last years of life in a general aged population. This association was also independent of serum ionized calcium (Ca2+) and the estimated glomerular filtration rate (GFR). A slightly elevated PTH also indicated impaired two-year survival during the terminal years of frail elderly subjects independently of Ca2+, GFR, and of 25-OHD levels. The interplay between PTH and vitamin D in the regulation of calcium homeostasis is more complex than has been generally considered. In addition to muskuloskeletal health parathyroid hormone is also related to the maintenance of other important domains of health in old age. Higher PTH concentrations, even within conventional laboratory reference ranges, seem to be an independent indicator of an increased risk of all-cause and of cardiovascular mortality, independently of established cardiovascular risk factors, disturbances in mineral metabolism, and renal failure. Limited and inconsistent evidence supports the role of vitamin D deficiency-related lack of neuroprotective effects over the causal association between PTH and impaired cognitive functions. However, the causality of these associations remains unclear. The clinical implications of the observed relationships remain to be elucidated by future studies interfering with PTH concentrations, especially by long-term interventions to reduce PTH.
Resumo:
Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.
Resumo:
Defects in mitochondrial DNA (mtDNA) maintenance cause a range of human diseases, including autosomal dominant progressive external ophthalmoplegia (adPEO). This study aimed to clarify the molecular background of adPEO. We discovered that deoxynucleoside triphosphate (dNTP) metabolism plays a crucial in mtDNA maintenance and were thus prompted to search for therapeutic strategies based on the modulation of cellular dNTP pools or mtDNA copy number. Human mtDNA is a 16.6 kb circular molecule present in hundreds to thousands of copies per cell. mtDNA is compacted into nucleoprotein clusters called nucleoids. mtDNA maintenance diseases result from defects in nuclear encoded proteins that maintain the mtDNA. These syndromes typically afflict highly differentiated, post-mitotic tissues such as muscle and nerve, but virtually any organ can be affected. adPEO is a disease where mtDNA molecules with large-scale deletions accumulate in patients tissues, particularly in skeletal muscle. Mutations in five nuclear genes, encoding the proteins ANT1, Twinkle, POLG, POLG2 and OPA1, have previously been shown to cause adPEO. Here, we studied a large North American pedigree with adPEO, and identified a novel heterozygous mutation in the gene RRM2B, which encodes the p53R2 subunit of the enzyme ribonucleotide reductase (RNR). RNR is the rate-limiting enzyme in dNTP biosynthesis, and is required both for nuclear and mitochondrial DNA replication. The mutation results in the expression of a truncated form of p53R2, which is likely to compete with the wild-type allele. A change in enzyme function leads to defective mtDNA replication due to altered dNTP pools. Therefore, RRM2B is a novel adPEO disease gene. The importance of adequate dNTP pools and RNR function for mtDNA maintenance has been established in many organisms. In yeast, induction of RNR has previously been shown to increase mtDNA copy number, and to rescue the phenotype caused by mutations in the yeast mtDNA polymerase. To further study the role of RNR in mammalian mtDNA maintenance, we used mice that broadly overexpress the RNR subunits Rrm1, Rrm2 or p53R2. Active RNR is a heterotetramer consisting of two large subunits (Rrm1) and two small subunits (either Rrm2 or p53R2). We also created bitransgenic mice that overexpress Rrm1 together with either Rrm2 or p53R2. In contrast to the previous findings in yeast, bitransgenic RNR overexpression led to mtDNA depletion in mouse skeletal muscle, without mtDNA deletions or point mutations. The mtDNA depletion was associated with imbalanced dNTP pools. Furthermore, the mRNA expression levels of Rrm1 and p53R2 were found to correlate with mtDNA copy number in two independent mouse models, suggesting nuclear-mitochondrial cross talk with regard to mtDNA copy number. We conclude that tight regulation of RNR is needed to prevent harmful alterations in the dNTP pool balance, which can lead to disordered mtDNA maintenance. Increasing the copy number of wild-type mtDNA has been suggested as a strategy for treating PEO and other mitochondrial diseases. Only two proteins are known to cause a robust increase in mtDNA copy number when overexpressed in mice; the mitochondrial transcription factor A (TFAM), and the mitochondrial replicative helicase Twinkle. We studied the mechanisms by which Twinkle and TFAM elevate mtDNA levels, and showed that Twinkle specifically implements mtDNA synthesis. Furthermore, both Twinkle and TFAM were found to increase mtDNA content per nucleoid. Increased mtDNA content in mouse tissues correlated with an age-related accumulation of mtDNA deletions, depletion of mitochondrial transcripts, and progressive respiratory dysfunction. Simultaneous overexpression of Twinkle and TFAM led to a further increase in the mtDNA content of nucleoids, and aggravated the respiratory deficiency. These results suggested that high mtDNA levels have detrimental long-term effects in mice. These data have to be considered when developing and evaluating treatment strategies for elevating mtDNA copy number.
Resumo:
Major advances in the treatment of preterm infants have occurred during the last three decades. Survival rates have increased, and the first generations of preterm infants born at very low birth weight (VLBW; less than 1500 g) who profited from modern neonatal intensive care are now in young adulthood. The literature shows that VLBW children achieve on average lower scores on cognitive tests, even after exclusion of individuals with obvious neurosensory deficits. Evidence also exists for an increased risk in VLBW children for various neuropsychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and related behavioral symptoms. Up till now, studies extending into adulthood are sparse, and it remains to be seen whether these problems persist into adulthood. The aim of this thesis was to study ADHD-related symptoms and cognitive and executive functioning in young adults born at VLBW. In addition, we aimed to study sleep disturbances, known to adversely affect both cognition and attention. We hypothesized that preterm birth at VLBW interferes with early brain development in a way that alters the neuropsychological phenotype; this may manifest itself as ADHD symptoms and impaired cognitive abilities in young adulthood. In this cohort study from a geographically defined region, we studied 166 VLBW adults and 172 term-born controls born from 1978 through 1985. At ages 18 to 27 years, the study participants took part in a clinic study during which their physical and psychological health was assessed in detail. Three years later, 213 of these individuals participated in a follow-up. The current study is part of a larger research project (The Helsinki Study of Very Low Birth Weight Adults), and the measurements of interest for this particular study include the following: 1) The Adult Problem Questionnaire (APQ), a self-rating scale of ADHD-related symptoms in adults; 2) A computerized cognitive test battery designed for population studies (CogState®) which measures core cognitive abilities such as reaction time, working memory, and visual learning; 3) Sleep assessment by actigraphy, the Basic Nordic Sleep Questionnaire, and the Morningness-Eveningness Questionnaire. Actigraphs are wrist-worn accelerometers that separate sleep from wakefulness by registering body movements. Contrary to expectations, VLBW adults as a group reported no more ADHD-related behavioral symptoms than did controls. Further subdivision of the VLBW group into SGA (small for gestational age) and AGA (appropriate for gestational age) subgroups, however, revealed more symptoms on ADHD subscales pertaining to executive dysfunction and emotional instability among those born SGA. Thus, it seems that intrauterine growth retardation (for which SGA served as a proxy) is a more essential predictor for self-perceived ADHD symptoms in adulthood than is VLBW birth as such. In line with observations from other cohorts, the VLBW adults reported less risk-taking behavior in terms of substance use (alcohol, smoking, and recreational drugs), a finding reassuring for the VLBW individuals and their families. On the cognitive test, VLBW adults free from neurosensory deficits had longer reaction times than did term-born peers on all tasks included in the test battery, and lower accuracy on the learning task, with no discernible effect of SGA status over and above the effect of VLBW. Altogether, on a group level, even high-functioning VLBW adults show subtle deficits in psychomotor processing speed, visual working memory, and learning abilities. The sleep studies provided no evidence for differences in sleep quality or duration between the two groups. The VLBW adults were, however, at more than two-fold higher risk for sleep-disordered breathing (in terms of chronic snoring). Given the link between sleep-disordered breathing and health sequelae, these results suggest that VLBW individuals may benefit from an increased awareness among clinicians of this potential problem area. An unexpected finding from the sleep studies was the suggestion of an advanced sleep phase: The VLBW adults went to bed earlier according to the actigraphy registrations and also reported earlier wake-up times on the questionnaire. In further study of this issue in conjunction with the follow-up three years later, the VLBW group reported higher levels of morningness propensity, further corroborating the preliminary findings of an advanced sleep phase. Although the clinical implications are not entirely clear, the issue may be worth further study, since circadian rhythms are closely related to health and well-being. In sum, we believe that increased understanding of long-term outcomes after VLBW, and identification of areas and subgroups that are particularly vulnerable, will allow earlier recognition of potential problems and ultimately lead to improved prevention strategies.
Resumo:
Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.
Resumo:
The aim of this work was to examine how breathing, swallowing and voicing are affected in different laryngeal disorders. For this purpose, we examined four different patient groups: patients who had undergone total laryngectomy, anterior cervical decompression (ACD), or injection laryngoplasty with autologous fascia (ILAF), and patients with dyspnea during exercise. We studied the problems and benefits related to the automatic speech valve used for the rehabilitation of speech in laryngectomized patients. The device was given to 14 total laryngectomized patients who used the traditional valve especially well. The usefulness of voice and intelligibility of speech were assessed by speech pathologists. The results demonstrated better performance with the traditional valve in both dimensions. Most of the patients considered the automatic valve a helpful additional device but because of heavier breathing and the greater work needed for speech production, it was not suitable as a sole device in speech rehabilitation. Dysphonia and dysphagia are known complications of ACD. These symptoms are caused due to the stretching of tissue needed during the surgery, but the extent and the recovery from them was not well known before our study. We studied two patient groups, an early group with 50 patients who were examined immediately before and after the surgery and a late group with 64 patients who were examined 3 9 months postoperatively. Altogether, 60% reported dysphonia and 69% dysphagia immediately after the operation. Even though dysphagia and dysphonia often appeared after surgery, permanent problems seldom occurred. Six (12 %) cases of transient and two (3 %) permanent vocal cord paresis were detected. In our third study, the long-term results of ILAF in 43 patients with unilateral vocal cord paralysis were examined. The mean follow-up was 5.8 years (range 3 10). Perceptual evaluation demonstrated improved results for voice quality, and videostroboscopy revealed complete or partial glottal closure in 83% of the patients. Fascia showed to be a stable injection material with good vocal results. In our final study we developed a new diagnostic method for exertional laryngeal dyspnea by combining a cardiovascular exercise test with simultaneous fiberoptic observation of the larynx. With this method, it is possible to visualize paradoxal closure of the vocal cords during inspiration, which is a diagnostic criterion for vocal cord dysfunction (VCD). We examined 30 patients referred to our hospital because of suspicion of exercise-induced vocal cord dysfunction (EIVCD). Twenty seven out of thirty patients were able to perform the test. Dyspnea was induced in 15 patients, and of them five had EIVCD and four high suspicion of EIVCD. With our test it is possible to set an accurate diagnosis for exertional laryngeal dyspnea. Moreover, the often seen unnecessary use of asthma drugs among these patients can be avoided.
Resumo:
Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.
Resumo:
Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.