85 resultados para Matematiska förmågor
Resumo:
In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.
Resumo:
We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.
Resumo:
In this thesis we study a few games related to non-wellfounded and stationary sets. Games have turned out to be an important tool in mathematical logic ranging from semantic games defining the truth of a sentence in a given logic to for example games on real numbers whose determinacies have important effects on the consistency of certain large cardinal assumptions. The equality of non-wellfounded sets can be determined by a so called bisimulation game already used to identify processes in theoretical computer science and possible world models for modal logic. Here we present a game to classify non-wellfounded sets according to their branching structure. We also study games on stationary sets moving back to classical wellfounded set theory. We also describe a way to approximate non-wellfounded sets with hereditarily finite wellfounded sets. The framework used to do this is domain theory. In the Banach-Mazur game, also called the ideal game, the players play a descending sequence of stationary sets and the second player tries to keep their intersection stationary. The game is connected to precipitousness of the corresponding ideal. In the pressing down game first player plays regressive functions defined on stationary sets and the second player responds with a stationary set where the function is constant trying to keep the intersection stationary. This game has applications in model theory to the determinacy of the Ehrenfeucht-Fraisse game. We show that it is consistent that these games are not equivalent.
Resumo:
A smooth map is said to be stable if small perturbations of the map only differ from the original one by a smooth change of coordinates. Smoothly stable maps are generic among the proper maps between given source and target manifolds when the source and target dimensions belong to the so-called nice dimensions, but outside this range of dimensions, smooth maps cannot generally be approximated by stable maps. This leads to the definition of topologically stable maps, where the smooth coordinate changes are replaced with homeomorphisms. The topologically stable maps are generic among proper maps for any dimensions of source and target. The purpose of this thesis is to investigate methods for proving topological stability by constructing extremely tame (E-tame) retractions onto the map in question from one of its smoothly stable unfoldings. In particular, we investigate how to use E-tame retractions from stable unfoldings to find topologically ministable unfoldings for certain weighted homogeneous maps or germs. Our first results are concerned with the construction of E-tame retractions and their relation to topological stability. We study how to construct the E-tame retractions from partial or local information, and these results form our toolbox for the main constructions. In the next chapter we study the group of right-left equivalences leaving a given multigerm f invariant, and show that when the multigerm is finitely determined, the group has a maximal compact subgroup and that the corresponding quotient is contractible. This means, essentially, that the group can be replaced with a compact Lie group of symmetries without much loss of information. We also show how to split the group into a product whose components only depend on the monogerm components of f. In the final chapter we investigate representatives of the E- and Z-series of singularities, discuss their instability and use our tools to construct E-tame retractions for some of them. The construction is based on describing the geometry of the set of points where the map is not smoothly stable, discovering that by using induction and our constructional tools, we already know how to construct local E-tame retractions along the set. The local solutions can then be glued together using our knowledge about the symmetry group of the local germs. We also discuss how to generalize our method to the whole E- and Z- series.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
This thesis consists of three articles on passive vector fields in turbulence. The vector fields interact with a turbulent velocity field, which is described by the Kraichnan model. The effect of the Kraichnan model on the passive vectors is studied via an equation for the pair correlation function and its solutions. The first paper is concerned with the passive magnetohydrodynamic equations. Emphasis is placed on the so called "dynamo effect", which in the present context is understood as an unbounded growth of the pair correlation function. The exact analytical conditions for such growth are found in the cases of zero and infinite Prandtl numbers. The second paper contains an extensive study of a number of passive vector models. Emphasis is now on the properties of the (assumed) steady state, namely anomalous scaling, anisotropy and small and large scale behavior with different types of forcing or stirring. The third paper is in many ways a completion to the previous one in its study of the steady state existence problem. Conditions for the existence of the steady state are found in terms of the spatial roughness parameter of the turbulent velocity field.
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.
Resumo:
The module of a quadrilateral is a positive real number which divides quadrilaterals into conformal equivalence classes. This is an introductory text to the module of a quadrilateral with some historical background and some numerical aspects. This work discusses the following topics: 1. Preliminaries 2. The module of a quadrilateral 3. The Schwarz-Christoffel Mapping 4. Symmetry properties of the module 5. Computational results 6. Other numerical methods Appendices include: Numerical evaluation of the elliptic integrals of the first kind. Matlab programs and scripts and possible topics for future research. Numerical results section covers additive quadrilaterals and the module of a quadrilateral under the movement of one of its vertex.