38 resultados para hypercyclic, cyclic vectors, topological vector spaces
Resumo:
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W,Z) where one boson decays to a dijet final state . The data correspond to 3.5 inverse femtobarns of integrated luminosity of ppbar collisions at sqrt(s)=1.96 TeV collected by the CDFII detector at the Fermilab Tevatron. We observe 1516+/-239(stat)+/-144(syst) diboson candidate events and measure a cross section sigma(ppbar->VV+X) of 18.0+/-2.8(stat)+/-2.4(syst)+/-1.1(lumi) pb, in agreement with the expectations of the standard model.
Resumo:
We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb$^{-1}$ of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study $t\bar{t}$ events in the lepton+jets channel with at least one $b$-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV$/c^2$ and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.
Resumo:
In the thesis we consider inference for cointegration in vector autoregressive (VAR) models. The thesis consists of an introduction and four papers. The first paper proposes a new test for cointegration in VAR models that is directly based on the eigenvalues of the least squares (LS) estimate of the autoregressive matrix. In the second paper we compare a small sample correction for the likelihood ratio (LR) test of cointegrating rank and the bootstrap. The simulation experiments show that the bootstrap works very well in practice and dominates the correction factor. The tests are applied to international stock prices data, and the .nite sample performance of the tests are investigated by simulating the data. The third paper studies the demand for money in Sweden 1970—2000 using the I(2) model. In the fourth paper we re-examine the evidence of cointegration between international stock prices. The paper shows that some of the previous empirical results can be explained by the small-sample bias and size distortion of Johansen’s LR tests for cointegration. In all papers we work with two data sets. The first data set is a Swedish money demand data set with observations on the money stock, the consumer price index, gross domestic product (GDP), the short-term interest rate and the long-term interest rate. The data are quarterly and the sample period is 1970(1)—2000(1). The second data set consists of month-end stock market index observations for Finland, France, Germany, Sweden, the United Kingdom and the United States from 1980(1) to 1997(2). Both data sets are typical of the sample sizes encountered in economic data, and the applications illustrate the usefulness of the models and tests discussed in the thesis.
Resumo:
Hyönteispölytys lisää monien ristipölytteisten viljelykasvien siemensatoa sekä parantaa sadon laatua. Marjakasveilla, kuten mansikalla ja vadelmalla marjojen koko suurenee sekä niiden laatu paranee onnistuneen pölytyksen seurauksena. Aiempien havaintojen mukaan mansikan kukat eivät pääsääntöisesti houkuttele mehiläisiä, kun taas vadelma on yksi mehiläisten pääsatokasveista. Tutkimuksen tarkoituksena oli selvittää, miten tehokkaasti mehiläiset vierailevat mansikalla sekä vadelmalla, keskittyen kukkakohtaisiin käynteihin tuntia kohti. Mehiläisiä voidaan käyttää Gliocladium catenulatum-vektoreina torjuttaessa mansikan ja vadelman harmaahometta (Botrytis cinerea). Kukkavierailujen perusteella arvioidaan, onko vektorilevitys riittävän tehokas torjumaan harmaahometta ja miten hyvin mehiläisiä voidaan käyttää pölytyspalveluihin, etenkin mansikalla. Havainnot kerättiin kuudelta eri tilalta Sisä-Savosta kesällä 2007. Kukkavierailuja laskettiin mansikan ja vadelman kukinnan aikana erilaisissa sääolosuhteissa, eri kellonaikoina ja eri etäisyyksillä mehiläispesistä. Kukat valittiin satunnaisesti, ja valintaperusteena oli kukan avonaisuus. Tarkkailuaika riippui mehiläisten lentoaktiivisuudesta. Mansikan koko havaintojakson keskiarvoksi tuli 1,75 käyntiä kukkaa kohti tunnissa. Vadelmalla vastaava luku oli 4,27, joten keskiarvojen perusteella vadelma oli houkuttelevampi kuin mansikka. Kasvukauden vaiheella ei ollut eroja vierailuihin kummallakaan kasvilla, mutta vuorokaudenajan suhteen vierailuja oli enemmän aamupäivällä kuin iltapäivällä. Lämpötila korreloi positiivisesti vierailutiheyden kanssa kummallakin kasvilla. Sääolosuhteet rajoittivat havaintojen keräämistä ja kesä oli erittäin sateinen. Mehiläiset vierailivat kukissa riittävästi haastavissakin sääolosuhteissa niin, että harmaahometorjunta onnistui. Vektorilevitystä suunnitellessa, etenkin mansikalla, tulee ottaa huomioon pesien sijoittelu sekä riittävä lukumäärä. Pesien ravinnontarpeen tulee olla suuri, jotta mehiläiset keräisivät ravintoa kukista mahdollisimman tehokkaasti. Pesiin voidaan lisätä tarvittaessa avosikiöitä tai poistaa siitepölyvarastoja ravinnonkeruuaktiivisuuden lisäämiseksi. Lisätutkimusta tarvitaan pesien sijoittelun, kilpailevien kasvien sekä mansikkalajikkeiden houkuttelevuuden vaikutuksesta vierailutiheyteen. Suomalaisten mansikkalajikkeiden meden sekä siitepölyneritystä olisi myös hyvä selvittää.
Resumo:
Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.
Resumo:
The most prominent objective of the thesis is the development of the generalized descriptive set theory, as we call it. There, we study the space of all functions from a fixed uncountable cardinal to itself, or to a finite set of size two. These correspond to generalized notions of the universal Baire space (functions from natural numbers to themselves with the product topology) and the Cantor space (functions from natural numbers to the {0,1}-set) respectively. We generalize the notion of Borel sets in three different ways and study the corresponding Borel structures with the aims of generalizing classical theorems of descriptive set theory or providing counter examples. In particular we are interested in equivalence relations on these spaces and their Borel reducibility to each other. The last chapter shows, using game-theoretic techniques, that the order of Borel equivalence relations under Borel reduciblity has very high complexity. The techniques in the above described set theoretical side of the thesis include forcing, general topological notions such as meager sets and combinatorial games of infinite length. By coding uncountable models to functions, we are able to apply the understanding of the generalized descriptive set theory to the model theory of uncountable models. The links between the theorems of model theory (including Shelah's classification theory) and the theorems in pure set theory are provided using game theoretic techniques from Ehrenfeucht-Fraïssé games in model theory to cub-games in set theory. The bottom line of the research declairs that the descriptive (set theoretic) complexity of an isomorphism relation of a first-order definable model class goes in synch with the stability theoretical complexity of the corresponding first-order theory. The first chapter of the thesis has slightly different focus and is purely concerned with a certain modification of the well known Ehrenfeucht-Fraïssé games. There we (me and my supervisor Tapani Hyttinen) answer some natural questions about that game mainly concerning determinacy and its relation to the standard EF-game