84 resultados para differential cross-section
Resumo:
Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.
Resumo:
In northern latitudes, temperature is the key factor driving the temporal scales of biological activity, namely the length of the growing season and the seasonal efficiency of photosynthesis. The formation of atmospheric concentrations of biogenic volatile organic compounds (BVOCs) are linked to the intensity of biological activity. However, interdisciplinary knowledge of the role of temperature in the biological processes related to the annual cycle and photosynthesis and atmospheric chemistry is not fully understood. The aim of this study was to improve understanding of the role of temperature in these three interlinked areas: 1) onset of growing season, 2) photosynthetic efficiency and 3) BVOC air concentrations in a boreal forest. The results present a cross-section of the role of temperature on different spatial (southern northern boreal), structural (tree forest stand - forest) and temporal (day-season- year) scales. The fundamental status of the Thermal Time model in predicting the onset of spring recovery was confirmed. However, it was recommended that sequential models would be more appropriate tools when the onset of the growing season is estimated under a warmer climate. A similar type of relationship between photosynthetic efficiency and temperature history was found in both southern and northern boreal forest stands. This result draws attention to the critical question of the seasonal efficiency of coniferous species to emit organic compounds under a warmer climate. New knowledge about the temperature dependence of the concentrations of biogenic volatile organic compounds in a boreal forest stand was obtained. The seasonal progress and the inter-correlation of BVOC concentrations in ambient air indicated a link to biological activity. Temperature was found to be the main driving factor for the concentrations. However, in addition to temperature, other factors may play a significant role here, especially when the peak concentrations are studied. There is strong evidence that the spring recovery and phenological events of many plant species have already advanced in Europe. This study does not fully support this observation. In a boreal forest, changes in the annual cycle, especially the temperature requirement in winter, would have an impact on the atmospheric BVOC composition. According to this study, more joint phenological and BVOC field observations and laboratory experiments are still needed to improve these scenarios.
Resumo:
The TOTEM experiment at the LHC will measure the total proton-proton cross-section with a precision better than 1%, elastic proton scattering over a wide range in momentum transfer -t= p^2 theta^2 up to 10 GeV^2 and diffractive dissociation, including single, double and central diffraction topologies. The total cross-section will be measured with the luminosity independent method that requires the simultaneous measurements of the total inelastic rate and the elastic proton scattering down to four-momentum transfers of a few 10^-3 GeV^2, corresponding to leading protons scattered in angles of microradians from the interaction point. This will be achieved using silicon microstrip detectors, which offer attractive properties such as good spatial resolution (<20 um), fast response (O(10ns)) to particles and radiation hardness up to 10^14 "n"/cm^2. This work reports about the development of an innovative structure at the detector edge reducing the conventional dead width of 0.5-1 mm to 50-60 um, compatible with the requirements of the experiment.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.
Resumo:
Controlled nuclear fusion is one of the most promising sources of energy for the future. Before this goal can be achieved, one must be able to control the enormous energy densities which are present in the core plasma in a fusion reactor. In order to be able to predict the evolution and thereby the lifetime of different plasma facing materials under reactor-relevant conditions, the interaction of atoms and molecules with plasma first wall surfaces have to be studied in detail. In this thesis, the fundamental sticking and erosion processes of carbon-based materials, the nature of hydrocarbon species released from plasma-facing surfaces, and the evolution of the components under cumulative bombardment by atoms and molecules have been investigated by means of molecular dynamics simulations using both analytic potentials and a semi-empirical tight-binding method. The sticking cross-section of CH3 radicals at unsaturated carbon sites at diamond (111) surfaces is observed to decrease with increasing angle of incidence, a dependence which can be described by a simple geometrical model. The simulations furthermore show the sticking cross-section of CH3 radicals to be strongly dependent on the local neighborhood of the unsaturated carbon site. The erosion of amorphous hydrogenated carbon surfaces by helium, neon, and argon ions in combination with hydrogen at energies ranging from 2 to 10 eV is studied using both non-cumulative and cumulative bombardment simulations. The results show no significant differences between sputtering yields obtained from bombardment simulations with different noble gas ions. The final simulation cells from the 5 and 10 eV ion bombardment simulations, however, show marked differences in surface morphology. In further simulations the behavior of amorphous hydrogenated carbon surfaces under bombardment with D^+, D^+2, and D^+3 ions in the energy range from 2 to 30 eV has been investigated. The total chemical sputtering yields indicate that molecular projectiles lead to larger sputtering yields than atomic projectiles. Finally, the effect of hydrogen ion bombardment of both crystalline and amorphous tungsten carbide surfaces is studied. Prolonged bombardment is found to lead to the formation of an amorphous tungsten carbide layer, regardless of the initial structure of the sample. In agreement with experiment, preferential sputtering of carbon is observed in both the cumulative and non-cumulative simulations
Resumo:
In this thesis we consider the phenomenology of supergravity, and in particular the particle called "gravitino". We begin with an introductory part, where we discuss the theories of inflation, supersymmetry and supergravity. Gravitino production is then investigated into details, by considering the research papers here included. First we study the scattering of massive W bosons in the thermal bath of particles, during the period of reheating. We show that the process generates in the cross section non trivial contributions, which eventually lead to unitarity breaking above a certain scale. This happens because, in the annihilation diagram, the longitudinal degrees of freedom in the propagator of the gauge bosons disappear from the amplitude, by virtue of the supergravity vertex. Accordingly, the longitudinal polarizations of the on-shell W become strongly interacting in the high energy limit. By studying the process with both gauge and mass eigenstates, it is shown that the inclusion of diagrams with off-shell scalars of the MSSM does not cancel the divergences. Next, we approach cosmology more closely, and study the decay of a scalar field S into gravitinos at the end of inflation. Once its mass is comparable to the Hubble rate, the field starts coherent oscillations about the minimum of its potential and decays pertubatively. We embed S in a model of gauge mediation with metastable vacua, where the hidden sector is of the O'Raifeartaigh type. First we discuss the dynamics of the field in the expanding background, then radiative corrections to the scalar potential V(S) and to the Kähler potential are calculated. Constraints on the reheating temperature are accordingly obtained, by demanding that the gravitinos thus produced provide with the observed Dark Matter density. We modify consistently former results in the literature, and find that the gravitino number density and T_R are extremely sensitive to the parameters of the model. This means that it is easy to account for gravitino Dark Matter with an arbitrarily low reheating temperature.
Resumo:
The structure and the mechanical properties of wood of Norway spruce (Picea abies [L.] Karst.) were studied using small samples from Finland and Sweden. X-ray diffraction (XRD) was used to determine the orientation of cellulose microfibrils (microfibril angle, MFA), the dimensions of cellulose crystallites and the average shape of the cell cross-section. X-ray attenuation and x-ray fluorescence measurements were used to study the chemical composition and the trace element content. Tensile testing with in situ XRD was used to characterise the mechanical properties of wood and the deformation of crystalline cellulose within the wood cell walls. Cellulose crystallites were found to be 192 284 Å long and 28.9 33.4 Å wide in chemically untreated wood and they were longer and wider in mature wood than in juvenile wood. The MFA distribution of individual Norway spruce tracheids and larger samples was asymmetric. In individual cell walls, the mean MFA was 19 30 degrees, while the mode of the MFA distribution was 7 21 degrees. Both the mean MFA and the mode of the MFA distribution decreased as a function of the annual ring. Tangential cell walls exhibited smaller mean MFA and mode of the MFA distribution than radial cell walls. Maceration of wood material caused narrowing of the MFA distribution and removed contributions observed at around 90 degrees. In wood of both untreated and fertilised trees, the average shape of the cell cross-section changed from circular via ambiguous to rectangular as the cambial age increased. The average shape of the cell cross-section and the MFA distribution did not change as a result of fertilisation. The mass absorption coefficient for x-rays was higher in wood of fertilised trees than in that of untreated trees and wood of fertilised trees contained more of the elements S, Cl, and K, but a smaller amount of Mn. Cellulose crystallites were longer in wood of fertilised trees than in that of untreated trees. Kraft cooking caused widening and shortening of the cellulose crystallites. Tensile tests parallel to the cells showed that if the mean MFA is initially around 10 degrees or smaller, no systematic changes occur in the MFA distribution due to strain. The role of mean MFA in defining the tensile strength or the modulus of elasticity of wood was not as dominant as that reported earlier. Crystalline cellulose elongated much less than the entire samples. The Poisson ratio νca of crystalline cellulose in Norway spruce wood was shown to be largely dependent on the surroundings of crystalline cellulose in the cell wall, varying between -1.2 and 0.8. The Poisson ratio was negative in kraft cooked wood and positive in chemically untreated wood. In chemically untreated wood, νca was larger in mature wood and in latewood compared to juvenile wood and earlywood.
Resumo:
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66M_{ee}
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.
Resumo:
We present a search for associated production of the standard model (SM) Higgs boson and a $Z$ boson where the $Z$ boson decays to two leptons and the Higgs decays to a pair of $b$ quarks in $p\bar{p}$ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ we see no evidence of a Higgs boson with a mass between 100 GeV$/c^2$ and 150 GeV$/c^2$. We set 95% confidence level (C.L.) upper limits on the cross-section for $ZH$ production as a function of the Higgs boson mass $m_H$; the limit is 8.2 times the SM prediction at $m_H = 115$ GeV$/c^2$.