40 resultados para cell proliferation models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dioxins are organic toxicants that are known to impair tooth development, especially dental hard tissue formation. The most toxic dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further, clinical studies suggest that maternal smoking during pregnancy can affect child s tooth development. One of the main components of tobacco smoke is the group of non-halogenated polycyclic aromatic hydrocarbons (PAHs), a representative of which is 7,12-dimethylbenz[a]anthracene (DMBA). Tributyltin (TBT), an organic tin compound, has been shown to impair bone mineralization in experimental animals. In addition to exposure to organic toxicants, a well-established cause for enamel hypomineralization is excess fluoride intake. The principal aim of this thesis project was to examine in vitro if, in addition to dioxins, other organic environmental toxicants, like PAHs and organic tin compounds, have adverse effects on tooth development, specifically on formation and mineralization of the major dental hard tissues, the dentin and the enamel. The second aim was to investigate in vitro if fluoride could intensify the manifestation of the detrimental developmental dental effects elicited by TCDD. The study was conducted by culturing mandibular first and second molar tooth germs of E18 NMRI mouse embryos in a Trowell-type organ culture and exposing them to DMBA, TBT, and sodium fluoride (NaF) and/or TCDD at various concentrations during the secretory and mineralization stages of development. Specific methods used were HE-staining for studying cell and tissue morphology, BrdU-staining for cell proliferation, TUNEL-staining for apoptosis, and QPCR, in situ hybridization and immunohistochemistry for the expressions of selected genes associated with mineralization. This thesis work showed that DMBA, TBT, TCDD and NaF interfere with dentin and enamel formation of embryonic mouse tooth in vitro, and that fluoride can potentiate the harmful effect of TCDD. The results suggested that adverse effects of TBT involve altered expression of genes associated with mineralization, and that DMBA and TBT as well as NaF and TCDD together primarily affect dentin mineralization. Since amelogenesis does not start until mineralization of dentin begins, impaired enamel matrix secretion could be a secondary effect. Dioxins, PAHs and organotins are all liposoluble and can be transferred to the infant by breast-feeding. Since doses are usually very low, developmental toxicity on most of the organs is difficult to indentify clinically. However, tooth may act as an indicator of exposure, since the major dental hard tissues, the dentin and the enamel, are not replaced once they have been formed. Thus, disturbed dental hard tissue formation raises the question of more extensive developmental toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All protein-encoding genes in eukaryotes are transcribed into messenger RNA (mRNA) by RNA Polymerase II (RNAP II), whose activity therefore needs to be tightly controlled. An important and only partially understood level of regulation is the multiple phosphorylations of RNAP II large subunit C-terminal domain (CTD). Sequential phosphorylations regulate transcription initiation and elongation, and recruit factors involved in co-transcriptional processing of mRNA. Based largely on studies in yeast models and in vitro, the kinase activity responsible for the phosphorylation of the serine-5 (Ser5) residues of RNAP II CTD has been attributed to the Mat1/Cdk7/CycH trimer as part of Transcription Factor IIH. However, due to the lack of good mammalian genetic models, the roles of both RNAP II Ser5 phosphorylation as well as TFIIH kinase in transcription have provided ambiguous results and the in vivo kinase of Ser5 has remained elusive. The primary objective of this study was to elucidate the role of mammalian TFIIH, and specifically the Mat1 subunit in CTD phosphorylation and general RNAP II-mediated transcription. The approach utilized the Cre-LoxP system to conditionally delete murine Mat1 in cardiomyocytes and hepatocytes in vivo and and in cell culture models. The results identify the TFIIH kinase as the major mammalian Ser5 kinase and demonstrate its requirement for general transcription, noted by the use of nascent mRNA labeling. Also a role for Mat1 in regulating general mRNA turnover was identified, providing a possible rationale for earlier negative findings. A secondary objective was to identify potential gene- and tissue-specific roles of Mat1 and the TFIIH kinase through the use of tissue-specific Mat1 deletion. Mat1 was found to be required for the transcriptional function of PGC-1 in cardiomyocytes. Transriptional activation of lipogenic SREBP1 target genes following Mat1 deletion in hepatocytes revealed a repressive role for Mat1apparently mediated via co-repressor DMAP1 and the DNA methyltransferase Dnmt1. Finally, Mat1 and Cdk7 were also identified as a negative regulators of adipocyte differentiation through the inhibitory phosphorylation of Peroxisome proliferator-activated receptor (PPAR) γ. Together, these results demonstrate gene- and tissue-specific roles for the Mat1 subunit of TFIIH and open up new therapeutic possibilities in the treatment of diseases such as type II diabetes, hepatosteatosis and obesity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gliomas are the most frequent primary brain tumours. The cardinal features of gliomas are infiltrative growth pattern and progression from low-grade tumours to a more malignant phenotype. These features of gliomas generally prevent their complete surgical excision and cause their inherent tendency to recur after initial treatment and lead to poor long-term prognosis. Increasing knowledge about the molecular biology of gliomas has produced new markers that supplement histopathological diagnostics. Molecular markers are also used to evaluate the prognosis and predict therapeutic response. The purpose of this thesis is to study molecular events involved in the malignant progression of gliomas. Gliomas are highly vascularised tumours. Contrast enhancement in magnetic resonance imaging (MRI) reflects a disrupted blood-brain barrier and is often seen in malignant gliomas. In this thesis, 62 astrocytomas, oligodendrogliomas and oligoastrocytomas were studied by MRI and immunohistochemistry. Contrast enhancement in preoperative MRI was associated with angiogenesis, tumour cell proliferation and histological grade of gliomas. Activation of oncogenes by gene amplification is a common genetic aberration in gliomas. EGFR amplification on chromosome 7p12 occurs in 30-40% of glioblastomas. PDGFRA, KIT and VEGFR2 are receptor tyrosine kinase genes located on chromosome 4q12. Amplification of these genes was studied using in situ hybridisation in the primary and recurrent astrocytomas, oligodendrogliomas and oligoastrocytomas of 87 patients. PDGFRA, KIT or VEGFR2 amplification was found in 22% of primary tumours and 36% of recurrent tumours including low-grade and malignant gliomas. The most frequent aberration was KIT amplification, which occurred in 10% of primary tumours and in 27% of recurrent tumours. The expression of ezrin, cyclooxygenase 2 (COX-2) and HuR was studied immunohistochemically in a series of primary and recurrent gliomas of 113 patients. Ezrin is a cell membrane-cytoskeleton linking-protein involved in the migration of glioma cells. The COX-2 enzyme is implicated in the carcinogenesis of epithelial neoplasms and is overexpressed in gliomas. HuR is an RNA-stabilising protein, which regulates the expression of several proteins including COX-2. Ezrin, COX-2 and HuR were associated with histological grade and the overall survival of glioma patients. However, in multivariate analysis they were not independent prognostic factors. In conclusion, these results suggest that contrast enhancement in MRI can be used as a surrogate marker for the proliferative and angiogenic potential of gliomas. Aberrations of PDGFRA, KIT and VEGFR2 genes, as well as the dysregulated expression of ezrin, COX-2 and HuR proteins, are linked to the progression of gliomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic rejection in the form of obliterative bronchiolitis (OB) is the major cause of death 5 years after lung transplantation. The exact mechanism of OB remains unclear. This study focused on the role of cyclo-oxygenase (COX) -2, tenascin, and C-reactive protein (CRP) expression, and the occurrence of ingraft chimerism (= cells from two genetically distinct individuals in a same individual) in post-transplant OB development. In our porcine model, OB developed invariably in allografts, while autografts stayed patent. The histological changes were similar to those seen in human OB. In order to delay or prevent obliteration, animals were medicated according to certain protocol. In the beginning of the bronchial allograft reaction, COX-2 induction occurred in airway epithelial cells prior to luminal obliteration. COX-2 expression in macrophages and fibroblasts paralleled the onset of inflammation and fibroblast proliferation. This study demonstrated for the first time, that COX-2 expression is associated with the early stage of post- transplant obliterative airway disease. Tenascin expression in the respiratory epithelium appeared to be predictive of histologic features observed in human OB, and influx of immune cells. Expression in the bronchial wall and in the early obliterative lesions coincided with the onset of onset of fibroblast and inflammatory cell proliferation in the early stage of OB and was predictive of further influx of inflammatory and immune cells. CRP expression in the bronchial wall coincided with the remodelling process. High grade of bronchial wall CRP staining intensity predicted inflammation, accelerated fibroproliferation, and luminal obliteration, which are all features of OB. In the early obliterative plaque, majority of cells expressed CRP, but in mature, collagen-rich plaque, expression declined. Local CRP expression might be a response to inflammation and it might promote the development of OB. Early appearance of chimeric (= recipient-derived) cells in the graft airway epithelium predicted epithelial cell injury and obliteration of the bronchial lumen, which both are features of OB. Chimeric cells appeared in the airway epithelium after repair following transplantation-induced ischemic injury. Ingraft chimerism might be a mechanism to repair alloimmune-mediated tissue injury and to protect allografts from rejection after transplantation. The results of this study indicate, that COX-2, tenascin, CRP, and ingraft chimerism have a role in OB development. These findings increase the understanding of the mechanisms of OB, which may be beneficial in further development of diagnostic options.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various intrinsic and external factors are constantly attacking the cells causing damage to DNA and to other cellular structures. Cells in turn have evolved with different kinds of mechanisms to protect against the attacks and to repair the damage. Ultraviolet radiation (UVR) is one of the major environmental genotoxic carcinogens that causes inflammation, mutations, immunosuppression, accelerated aging of the skin and skin cancers. Epidermis is the outermost layer of the skin consisting mostly of keratinocytes, whose primary function is to protect the skin against e.g. UV radiation. LIM domain proteins are a group of proteins involved in regulation of cell growth, damage signalling, cell fate determination and signal transduction. Despite their two zinc fingers, LIM domains do not bind to DNA, but rather mediate protein-protein interactions and function as modular protein binding interfaces. We initially identified CSRP1 as UVR-regulated transcript by using expression profiling. Here we have further studied the regulation and function of CRP1, a representative of cysteine rich protein- family consisting of two LIM domains. We find that CRP1 is increased by UVR in primary human keratinocytes and in normal human skin fibroblasts. Ectopic expression of CRP1 protected the cells against UVR and provided a survival advantage, whereas silencing of CRP1 rendered the cells more photosensitive. Actinic keratosis is a premalignant lesion of skin caused by excess exposure to sunlight and sunburn, which may lead to formation of squamous cell carcinoma. The expression of CRP1 was increased in basal keratinocytes of Actinic keratosis patient specimens suggesting that CRP1 may be increased by constant exposure to UVR and may provide survival advantage for the cells also in vivo. In squamous cell carcinoma, CRP1 was only expressed in the fibroblasts surrounding the tumour. Moreover, we found that ectopic expression of CRP1 suppresses cell proliferation. Transforming growth factor beta (TGFbeta) is a multifunctional cytokine that regulates several functions in cell including growth, apoptosis and differentiation, and plays important roles in pathological disorders like cancer and fibrosis. We found that TGFbeta-signalling pathway regulates CRP1 at protein, but not at transcriptional level. The increase was mediated both through Smad and non-Smad signalling pathways involving MAPK/p38. Furthermore, we found that TGFbeta-mediated increase in CRP1 was associated with myofibroblast differentiation, and that CRP1 was significantly more expressed in idiopathic pulmonary fibrosis as compared to normal lung specimens. Since cell contractility is a distinct feature of myofibroblasts, and CRP1 is associated with actin cytoskeleton, we studied the role of CRP1 in cell contractility. CRP1 was found to localize to stress fibres that mediate contractility and to mediate myofibroblast contraction. These studies identify CRP1 as a stress responsive and cytokine regulated cytoskeletal protein that participates in pathological processes involved in fibrotic diseases and cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heart failure is a common, severe, and progressive condition associated with high mortality and morbidity. Because of population-aging in the coming decades, heart failure is estimated to reach epidemic proportions. Current medical and surgical treatments have reduced mortality, but the prognosis for patients has remained poor. Transplantation of skeletal myoblasts has raised hope of regenerating the failing heart and compensating for lost cardiac contractile tissue. In the present work, we studied epicardial transplantation of tissue-engineered myoblast sheets for treatment of heart failure. We employed a rat model of myocardial infarction-induced acute and chronic heart failure by left anterior descending coronary artery ligation. We then transplanted myoblast sheets genetically modified to resist cell death after transplantation by expressing antiapoptotic gene bcl2. In addition, we evaluated the regenerative capacity of myoblast sheets expressing the cardioprotective cytokine hepatocyte growth factor in a rat chronic heart failure model. Furthermore, we utilized in vitro cardiomyocyte and endothelial cell culture models as well as microarray gene expression analysis to elucidate molecular mechanisms mediating the therapeutic effects of myoblast sheet transplantation. Our results demonstrate that Bcl2-expression prolonged myoblast sheet survival in rat hearts after transplantation and induced secretion of cardioprotective, proangiogenic cytokines. After acute myocardial infarction, these sheets attenuated left ventricular dysfunction and myocardial damage, and they induced therapeutic angiogenesis. In the chronic heart failure model, inhibition of graft apoptosis by Bcl-2 improved cardiac function, supported survival of cardiomyocytes in the infarcted area, and induced angiogenesis in a vascular endothelial growth factor receptor 1- and 2-dependent mechanism. Hepatocyte growth factor-secreting myoblast sheets further enhanced the angiogenic efficacy of myoblast sheet therapy. Moreover, myoblast-secreted paracrine factors protected cardiomyocytes against oxidative stress in an epidermal growth factor receptor- and c-Met dependent manner. This protection was associated with induction of antioxidative genes and activation of the unfolded protein response. Our results provide evidence that inhibiting myoblast sheet apoptosis can enhance the sheets efficacy for treating heart failure after acute and chronic myocardial infarction. Furthermore, we show that myoblast sheets can serve as vehicles for delivery of growth factors, and induce therapeutic angiogenesis in the chronically ischemic heart. Finally, myoblasts induce, in a paracine manner, a cardiomyocyte-protective response against oxidative stress. Our study elucidates novel mechanisms of myoblast transplantation therapy, and suggests effective means to improve this therapy for the benefit of the heart failure patient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Worldwide and notably in the developed countries, cancer is an increasing cause of morbidity and mortality, being the second most common cause of death after ischemic heart disease. Now and in the future new cancer cases need to be diagnosed earlier. Prognostic factors may be helpful in recognizing and handling those patients who need more aggressive therapy, and it is also desirable to predict treatment response accurately. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein predominantly expressed in malignant tissues and inhibiting protein phosphatase 2A (PP2A) activity; it is a promising target for cancer therapy. The aim of this thesis was to evaluate the prognostic role of CIP2A in solid cancers, and for this purpose to explore expression of CIP2A, and investigating regulation of CIP2A in order to gain insight into signalling pathways leading to alteration in prognosis. Patients diagnosed with gastric, serous ovarian, tongue, or colorectal cancer at Helsinki University Central Hospital were included. Tumour tissue microarrays assembled from specimens from these patients were prepared and stained immunohistochemically for CIP2A protein expression. Associations with clinicopathologic parameters and other biomarkers were explored, and survival analyses were done according to the Kaplan-Meier method. Study of the role of CIP2A in intracellular signalling in vitro involved gastric, ovarian, and tongue cancer cell lines. We found CIP2A to be highly expressed in gastric, ovarian, tongue, and colorectal cancer specimens. CIP2A was associated with clinicopathologic parameters characterizing an aggressive disease, namely advanced stage, high grade, p53 immunopositivity, and high proliferation index. CIP2A led to recognition of gastric, ovarian, and tongue cancer patients with poor prognosis, however, with a cancer type-specific cut-off level for prognostic significance. In tongue cancer, it served as an independent prognostic marker. In contrast, in colorectal cancer, CIP2A provided no prognostic value. In cancer cell lines, CIP2A was highly expressed at both protein and mRNA levels, and promoted cell proliferation and anchorage-independent growth. In gastric cancer, we demonstrated with a MYCER construct in mouse embryo fibroblasts that activation of MYC led to increased CIP2A mRNA expression, and hence we suggested that a positive feedback mechanism between CIP2A and MYC may potentiate and prolong the oncogenic activity of these proteins. We demonstrated in ovarian cancer an association between CIP2A and EGFR protein overexpression and EGFR gene amplification. In ovarian and tongue cancer cells we showed that depletion of EGFR downregulates CIP2A expression. In conclusion, high CIP2A expression occurred frequently among patients with aggressive disease. CIP2A may serve as a prognostic marker in gastric, ovarian, and tongue cancer and thus may help in tailoring therapy for cancer patients. The positive feedback mechanism between CIP2A and MYC, as well as the positive regulation of CIP2A by EGFR, are a few signalling pathways regulating and regulated by CIP2A. These and other mechanisms need to be studied further, however. CIP2A is a potential target for therapy, and its potential role as predictive marker and as a tumour marker in serum requires exploration.