62 resultados para Tooth abnormalities
Resumo:
Keuhkosyöpä on yleisimpiä syöpätauteja. Se jaetaan kahteen päätyyppiin: pienisoluiseen ja ei-pienisoluiseen keuhkosyöpään. Ei-pienisoluinen keuhkosyöpä jaetaan lisäksi alatyyppeihin, joista suurimmat ovat levyepiteeli-, adeno- ja suurisoluinen karsinooma. Keuhkosyövän tärkein riskitekijä on tupakointi, mutta muutkin työ- ja elinympäristön altisteet, kuten asbesti, voivat johtaa syöpään. Väitöstyössä tutkittiin kahdenlaisten keuhkosyöpäryhmien erityispiirteitä. Työssä kartoitettiin, onko löydettävissä muutoksia, jotka erottavat asbestikeuhkosyövät muista syövistä sekä luuytimeen varhaisessa vaiheessa leviävät keuhkosyövät leviämättömistä syövistä. Tutkimusten ensimmäisessä vaiheessa käytettiin mikrosirupohjaisia menetelmiä, jotka mahdollistavat jopa kaikkien geenien tarkastelun yhden kokeen avulla. Vertailevien mikrosirututkimusten avulla on mahdollista paikantaa geenejä tai kromosomialueita, joiden muutokset erottelevat ryhmät toisistaan. Asbestiin liittyvissä tutkimuksissa paikannettiin kuusi kromosomialuetta, joissa geenien kopiolukumäärän sekä ilmenemistason muutokset erottelivat potilaat altistushistorian mukaan. Riippumattomilla laboratoriomenetelmillä tehtyjen jatkoanalyysien avulla pystyttiin varmistamaan, että 19p-alueen häviämä oli yhteydessä asbestialtistukseen. Työssä osoitettiin myös, että 19p-alueen muutoksia voidaan indusoida altistamalla soluja asbestille in vitro. Tutkimuksessa saatiin lisäksi viitteitä asbestispesifisistä muutoksista signaalinvälitysreiteissä, sillä yhdessä toimivien geenien ilmentymisessä havaittiin eroja asbestille altistuneiden ja altistumattomien välillä. Vertailemalla luuytimeen syövän aikaisessa vaiheessa levinneiden ja leviämättömien keuhkoadenokarsinoomien muutosprofiileita toisiinsa, paikannettiin viisi aluetta, joilla geenien kopiolukumäärä- sekä ilmenemistason muutokset erottelivat ryhmät toisistaan. Jatkoanalyyseissä havaittiin, että 4q-alueen häviämää esiintyi adenokarsinoomien lisäksi levyepiteelikarsinoomiin, jotka olivat levinneet luuytimeen. Myös keuhkosyöpien aivometastaaseissa alue oli toistuvasti hävinnyt. Väitöstyön tutkimukset osoittavat, että vertailevien mikrosiruanalyysien avulla saadaan tietoa syöpäryhmien erityispiirteistä. Työssä saadut tulokset osoittavat, että 19p-alueen muutokset ovat tyypillisiä asbestikeuhkosyöville ja 4q-alueen muutokset luuytimeen aikaisessa vaiheessa leviäville keuhkosyöville.
Resumo:
Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome that is inherited by an autosomal recessive manner. HLS belongs to the Finnish disease heritage, an entity of rare diseases that are more prevalent in Finland than in other parts of the world. The phenotypic spectrum of the syndrome is wide and it is characterized by several developmental abnormalities, including hydrocephalus and absent midline structures in the brain, abnormal lobation of the lungs, polydactyly as well as micrognathia and other craniofacial anomalies. Polyhydramnios are relatively frequent during pregnancy. HLS can nowadays be effectively identified by ultrasound scan already at the end of the first trimester of pregnancy. One of the main goals in this study was to identify and characterize the gene defect underlying HLS. The defect was found from a previously unknown gene that was named HYLS1. Identification of the gene defect made it possible to confirm the HLS diagnosis genetically, an aspect that provides valuable information for the families in which a fetus is suspected to have HLS. Neuropathological findings of mutation confirmed HLS cases were described for the first time in detail in this study. Also, detailed general pathological findings were described. Since HYLS1 was an unknown gene with no relatives in the known gene families, many functional studies were performed in order to unravel the function of the gene and of the protein it codes for. Studies showed, for example, that the subcellular localization of the HYLS1 protein was different when the normal and the defective forms were compared. In addition, HYLS1 was shown to possess transactivation potential which was significantly diminished in the defective form. According to the results of this study it can be stated that HYLS1 most likely participates in transcriptional regulation and also in the regulation of cholesterol metabolism and that the function of HYLS1 is critical for normal fetal development.
Resumo:
In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.
Resumo:
The cation-Cl- cotransporter (CCC) family comprises of Na+-Cl- cotransporter (NCC), Na+-K+-2Cl- cotransporters (NKCC1-2), and four K+-Cl- cotransporters (KCC1-4). These proteins are involved in several physiological activities, such as cell volume regulation. In neuronal tissues, NKCC1 and KCC2 are important in determining the intracellular Cl- levels and hence the neuronal responses to inhibitory neurotransmitters GABA and glycine. One aim of the work was to elucidate the roles for CCC isoforms in the control of nervous system development. KCC2 mRNA was shown to be developmentally up-regulated and follow neuronal maturation, whereas NKCC1 and KCC4 transcripts were highly expressed in the proliferative zones of subcortical regions. KCC1 and KCC3 mRNA displayed low expression throughout the embryogenesis. These expression profiles suggest a role for CCC isoforms in maturation of synaptic responses and in the regulation of neuronal proliferation during embryogenesis. The major aim of this work was to study the biological consequences of KCC2-deficiency in the adult CNS, by generating transgenic mice retaining 15-20% of normal KCC2 levels. In addition, by using these mice as a tool for in vivo pharmacological analysis, we investigated the requirements for KCC2 in tonic versus phasic GABAA receptor-mediated inhibition. KCC2-deficient mice displayed normal reproduction and life span, but showed several behavioral abnormalities, including increased anxiety-like behavior, impaired performance in water maze, alterations in nociceptive processing, and increased seizure susceptibility. In contrast, the mice displayed apparently normal spontaneous locomotor activity and motor coordination. Pharmacological analysis of KCC2-deficient mice revealed reduced sensititivity to diazepam, but normal gaboxadol-induced sedation, neurosteroid hypnosis and alcohol-induced motor impairment. Electrophysiological recordings from CA1-CA3 subregions of the hippocampus showed that KCC2 deficiency affected the reversal potentials of both the phasic and tonic GABA currents, and that the tonic conductance was not affected. The results suggest that requirement for KCC2 in GABAergic neurotransmission may differ among several functional systems in the CNS, which is possibly due to the more critical role of KCC2 activity in phasic compared to tonic GABAergic inhibition.
Resumo:
Studying neurodegeneration provides an opportunity to gain insights into normal cell physiology, and not just pathophysiology. In this thesis work the focus is on Infantile Neuronal Ceroid Lipofuscinosis (INCL). It is a recessively inherited lysosomal storage disorder. The disease belongs to the neuronal ceroid lipofuscinoses (NCLs), a group of common progressive neurodegenerative diseases of the childhood. Characteristic accumulation of autofluorescent storage material is seen in most tissues but only neurons of the central nervous system are damaged and eventually lost during the course of the disease leaving most other cell types unaffected. The disease is caused by mutations in the CLN1 gene, but the physiological function of the corresponding protein the palmitoyl protein thioesterase (PPT1) has remained elusive. The aim of this thesis work was to shed light on the molecular and cell biological mechanisms behind INCL. This study pinpointed the localization of PPT1 in axonal presynapses of neurons. It also established the role of PPT1 in early neuronal maturation as well as importance in mature neuronal synapses. This study revealed an endocytic defect in INCL patient cells manifesting itself as delayed trafficking of receptor and non-receptor mediated endocytic markers. Furthermore, this study was the first to connect the INCL storage proteins the sphingolipid activator proteins (SAPs) A and D to pathological events on the cellular level. Abnormal endocytic processing and intracellular re-localization was demonstrated in patient cells and disease model knock-out mouse neurons. To identify early affected cellular and metabolic pathways in INCL, knock-out mouse neurons were studied by global transcript profiling and functional analysis. The gene expression analysis revealed changes in neuronal maturation and cell communication strongly associated with the regulated secretory system. Furthermore, cholesterol metabolic pathways were found to be affected. Functional studies with the knock-out mouse model revealed abnormalities in neuronal maturation as well as key neuronal functions including abnormalities in intracellular calcium homeostasis and cholesterol metabolism. Together the findings, introduced in this thesis work, support the essential role of PPT1 in developing neurons as well as synaptic sites of mature neurons. Results of this thesis also elucidate early events in INCL pathogenesis revealing defective pathways ultimately leading to the neurodegenerative process. These results contribute to the understanding of the vital physiological function of PPT1 and broader knowledge of common cellular mechanisms behind neurodegeneration. These results add to the knowledge of these severe diseases offering basis for new approaches in treatment strategies.
Resumo:
Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.
Resumo:
Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).
Resumo:
Placental abruption, one of the most significant causes of perinatal mortality and maternal morbidity, occurs in 0.5-1% of pregnancies. Its etiology is unknown, but defective trophoblastic invasion of the spiral arteries and consequent poor vascularization may play a role. The aim of this study was to define the prepregnancy risk factors of placental abruption, to define the risk factors during the index pregnancy, and to describe the clinical presentation of placental abruption. We also wanted to find a biochemical marker for predicting placental abruption early in pregnancy. Among women delivering at the University Hospital of Helsinki in 1997-2001 (n=46,742), 198 women with placental abruption and 396 control women were identified. The overall incidence of placental abruption was 0.42%. The prepregnancy risk factors were smoking (OR 1.7; 95% CI 1.1, 2.7), uterine malformation (OR 8.1; 1.7, 40), previous cesarean section (OR 1.7; 1.1, 2.8), and history of placental abruption (OR 4.5; 1.1, 18). The risk factors during the index pregnancy were maternal (adjusted OR 1.8; 95% CI 1.1, 2.9) and paternal smoking (2.2; 1.3, 3.6), use of alcohol (2.2; 1.1, 4.4), placenta previa (5.7; 1.4, 23.1), preeclampsia (2.7; 1.3, 5.6) and chorioamnionitis (3.3; 1.0, 10.0). Vaginal bleeding (70%), abdominal pain (51%), bloody amniotic fluid (50%) and fetal heart rate abnormalities (69%) were the most common clinical manifestations of placental abruption. Retroplacental blood clot was seen by ultrasound in 15% of the cases. Neither bleeding nor pain was present in 19% of the cases. Overall, 59% went into preterm labor (OR 12.9; 95% CI 8.3, 19.8), and 91% were delivered by cesarean section (34.7; 20.0, 60.1). Of the newborns, 25% were growth restricted. The perinatal mortality rate was 9.2% (OR 10.1; 95% CI 3.4, 30.1). We then tested selected biochemical markers for prediction of placental abruption. The median of the maternal serum alpha-fetoprotein (MSAFP) multiples of median (MoM) (1.21) was significantly higher in the abruption group (n=57) than in the control group (n=108) (1.07) (p=0.004) at 15-16 gestational weeks. In multivariate analysis, elevated MSAFP remained as an independent risk factor for placental abruption, adjusting for parity ≥ 3, smoking, previous placental abruption, preeclampsia, bleeding in II or III trimester, and placenta previa. MSAFP ≥ 1.5 MoM had a sensitivity of 29% and a false positive rate of 10%. The levels of the maternal serum free beta human chorionic gonadotrophin MoM did not differ between the cases and the controls. None of the angiogenic factors (soluble endoglin, soluble fms-like tyrosine kinase 1, or placental growth factor) showed any difference between the cases (n=42) and the controls (n=50) in the second trimester. The levels of C-reactive protein (CRP) showed no difference between the cases (n=181) and the controls (n=261) (median 2.35 mg/l [interquartile range {IQR} 1.09-5.93] versus 2.28 mg/l [IQR 0.92-5.01], not significant) when tested in the first trimester (mean 10.4 gestational weeks). Chlamydia pneumoniae specific immunoglobulin G (IgG) and immunoglobulin A (IgA) as well as C. trachomatis specific IgG, IgA and chlamydial heat-shock protein 60 antibody rates were similar between the groups. In conclusion, although univariate analysis identified many prepregnancy risk factors for placental abruption, only smoking, uterine malformation, previous cesarean section and history of placental abruption remained significant by multivariate analysis. During the index pregnancy maternal alcohol consumption and smoking and smoking by the partner turned out to be the major independent risk factors for placental abruption. Smoking by both partners multiplied the risk. The liberal use of ultrasound examination contributed little to the management of women with placental abruption. Although second-trimester MSAFP levels were higher in women with subsequent placental abruption, clinical usefulness of this test is limited due to low sensitivity and high false positive rate. Similarly, angiogenic factors in early second trimester, or CRP levels, or chlamydial antibodies in the first trimester failed to predict placental abruption.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Within the last 15 years, several new leukoencephalopathies have been recognized. However, more than half of children with cerebral white matter abnormalities still have no specific diagnosis. Our aim was to classify unknown leukoencephalopathies and to identify new diseases among them. During the study, three subgroups of patients were delineated and examined further. First, we evaluated 38 patients with unknown leukoencephalopathy. Brain MRI findings were grouped into seven categories according to the predominant location of the abnormalities. The largest subgroups were myelination abnormalities (n=20) and periventricular white matter abnormalities (n=12). Six patients had uniform MRI findings with signal abnormalities in hemispheric white matter and in selective brain stem and spinal cord tracts. Magnetic resonance spectroscopy (MRS) showed elevated lactate and decreased N-acetylaspartate in the abnormal white matter. The patients presented with ataxia, tremor, distal spasticity, and signs of dorsal column dysfunction. This phenotype - leukoencephalopathy with brain stem and spinal cord involvement and elevated white matter lactate (LBSL) - was first published elsewhere in 2003. A new finding was development of a mild axonal neuropathy. The etiopathogenesis of this disease is unknown, but elevated white matter lactate in MRS suggests a mitochondrial disorder. Secondly, we studied 22 patients with 18q deletions. Clinical and MRI findings were correlated with molecularly defined size of the deletion. All patients with deletions between markers D18S469 and D18S1141 (n=18) had abnormal myelination in brain MRI, while four patients with interstitial deletions sparing that region, had normal myelination pattern. Haploinsufficiency of myelin basic protein is suggested to be responsible for this dysmyelination. Congenital aural atresia/stenosis was found in 50% of the cases and was associated with deletions between markers D18S812 (at 18q22.3) and D18S1141 (at q23). Last part of the study comprised 13 patients with leukoencephalopathy and extensive cerebral calcifications. They showed a spectrum of findings, including progressive cerebral cysts, retinal telangiectasias and angiomas, intrauterine growth retardation, skeletal and hematologic abnormalities, and severe intestinal bleeding, which overlap with features of the previously reported patients with "Coats plus" syndrome and "leukoencephalopathy with calcifications and cysts", suggesting that these disorders are related. All autopsied patients had similar neuropathologic findings showing calcifying obliterative microangiopathy. Our patients may represent an autosomally recessively inherited disorder because there were affected siblings and patients of both sexes. We have started genealogic and molecular genetic studies of this disorder.
Resumo:
Long QT syndrome is a congenital or acquired arrhythmic disorder which manifests as a prolonged QT-interval on the electrocardiogram and as a tendency to develop ventricular arrhythmias which can lead to sudden death. Arrhythmias often occur during intense exercise and/or emotional stress. The two most common subtypes of LQTS are LQT1, caused by mutations in the KCNQ1 gene and LQT2, caused by mutations in the KCNH2 gene. LQT1 and LQT2 patients exhibit arrhythmias in different types of situations: in LQT1 the trigger is usually vigorous exercise whereas in LQT2 arrhythmia results from the patient being startled from rest. It is not clear why trigger factors and clinical outcome differ from each other in the different LQTS subtypes. It is possible that stress hormones such as catecholamines may show different effects depending on the exact nature of the genetic defect, or sensitivity to catecholamines varies from subject to subject. Furthermore, it is possible that subtle genetic variants of putative modifier genes, including those coding for ion channels and hormone receptors, play a role as determinants of individual sensitivity to life-threatening arrhythmias. The present study was designed to identify some of these risk modifiers. It was found that LQT1 and LQT2 patients show an abnormal QT-adaptation to both mental and physical stress. Furthermore, as studied with epinephrine infusion experiments while the heart was paced and action potentials were measured from the right ventricular septum, LQT1 patients showed repolarization abnormalities which were related to their propensity to develop arrhythmia during intense, prolonged sympathetic tone, such as exercise. In LQT2 patients, this repolarization abnormality was noted already at rest corresponding to their arrhythmic episodes as a result of intense, sudden surges in adrenergic tone, such as fright or rage. A common KCNH2 polymorphism was found to affect KCNH2 channel function as demonstrated by in vitro experiments utilizing mammalian cells transfected with the KCNH2 potassium channel as well as QT-dynamics in vivo. Finally, the present study identified a common β-1-adrenergic receptor genotype that is related a shorter QT-interval in LQT1 patients. Also, it was discovered that compound homozygosity for two common β-adrenergic polymorphisms was related to the occurrence of symptoms in the LQT1 type of long QT syndrome. The studies demonstrate important genotype-phenotype differences between different LQTS subtypes and suggest that common modifier gene polymorphisms may affect cardiac repolarization in LQTS. It will be important in the future to prospectively study whether variant gene polymorphisms will assist in clinical risk profiling of LQTS patients.
Resumo:
Childhood-onset mitochondrial diseases comprise a heterogeneous group of disorders, which may manifest with almost any symptom and affect any tissue or organ. Due to challenging diagnostics, most children still lack a specific aetiological diagnosis. The aim of this thesis was to find molecular causes for childhood-onset mitochondrial disorders in Finland. We identified the underlying cause for 25 children, and found three new diseases, which had not been diagnosed in Finland before. These diseases caused severe progressive infantile-onset encephalomyopathies, and were due to defects in mitochondrial DNA (mtDNA) maintenance. Furthermore, the thesis provides the molecular background of Finnish patients with ‘leukoencephalopathy with brain stem and spinal cord involvement and elevated brain lactate’ (LBSL). A new phenotype was identified to be due to mutations in Twinkle, resembling ‘infantile onset spinocerebellar ataxia’ (IOSCA). These mutations caused mtDNA depletion in the liver, thus confirming the essential role of Twinkle in mtDNA maintenance, and expanding the molecular background of mtDNA depletion syndromes. The major aetiology for infantile mitochondrial myopathy in Finland was discovered to be due to mutations in thymidine kinase 2 (TK2). A novel mutation with Finnish ancestry was identified, and a genotype-phenotype correlation with mutation-specific distribution of tissue involvement was found, thus proving that deficient TK2 may cause multi-tissue depletion and impair neuronal function. This work established the molecular diagnosis and advanced the knowledge of phenotypes among paediatric patients with polymerase gamma (POLG) mutations. The patients showed severe early-onset encephalopathy with intractable epilepsy. POLG mutations are not a prevalent cause of children’s ataxias, although ataxia is a major presenting symptom among adults. Our findings indicate that POLG mutations should be investigated even if typical MRI, histochemical or biochemical abnormalities are lacking. LBSL patients showed considerable variation in phenotype despite identical mutations. A common, most likely European, ancestry, and a relative high carrier frequency of these mutations in Finland were discovered; suggesting that LBSL may be a quite common leukoencephalopathy in other populations as well. The results suggest that MRI findings are so unique that the diagnosis of LBSL is possible to make without genetic studies. This thesis work has resulted in identification of new mitochondrial disorders in Finland, enhancing the understanding of the clinical variability and the importance of tissue-specificity of these disorders. In addition to providing specific diagnosis to the patients, these findings give light to the underlying pathogenetic mechanisms of childhood-onset mitochondrial disorders.
Resumo:
Background. Cardiovascular disease (CVD) remains the most serious threat to life and health in industrialized countries. Atherosclerosis is the main underlying pathology associated with CVD, in particular coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease. Risk factors play an important role in initiating and accelerating the complex process of atherosclerosis. Most studies of risk factors have focused on the presence or absence of clinically defined CVD. Less is known about the determinants of the severity and extent of atherosclerosis in symptomatic patients. Aims. To clarify the association between coronary and carotid artery atherosclerosis, and to study the determinants associated with these abnormalities with special regard to novel cardiovascular risk factors. Subjects and methods. Quantitative coronary angiography (QCA) and B-mode ultrasound were used to assess coronary and carotid artery atherosclerosis in 108 patients with clinically suspected CAD referred for elective coronary angiography. To evaluate anatomic severity and extent of CAD, several QCA parameters were incorporated into indexes. These measurements reflected CAD severity, extent, and overall atheroma burden and were calculated for the entire coronary tree and separately for different coronary segments (i.e., left main, proximal, mid, and distal segments). Maximum and mean intima-media thickness (IMT) values of carotid arteries were measured and expressed as mean aggregate values. Furthermore, the study design included extensive fasting blood samples, oral glucose tolerance test, and an oral fat-load test to be performed in each participant. Results. Maximum and mean IMT values were significantly correlated with CAD severity, extent, and atheroma burden. There was heterogeneity in associations between IMT and CAD indexes according to anatomical location of CAD. Maximum and mean IMT values, respectively, were correlated with QCA indexes for mid and distal segments but not with the proximal segments of coronary vessels. The values of paraoxonase-1 (PON1) activity and concentration, respectively, were lower in subjects with significant CAD and there was a significant relationship between PON1 activity and concentration and coronary atherosclerosis assessed by QCA. PON1 activity was a significant determinant of severity of CAD independently of HDL cholesterol. Neither PON1 activity nor concentration was associated with carotid IMT. The concentration of triglycerides (TGs), triglyceride-rich lipoproteins (TRLs), oxidized LDL (oxLDL), and the cholesterol content of remnant lipoprotein particle (RLP-C) were significantly increased at 6 hours after intake of an oral fatty meal as compared with fasting values. The mean peak size of LDL remained unchanged 6 hours after the test meal. The correlations between total TGs, TRLs, and RLP-C in fasting and postprandial state were highly significant. RLP-C correlated with oxLDL both in fasting and in fed state and inversely with LDL size. In multivariate analysis oxLDL was a determinant of severity and extent of CAD. Neither total TGs, TRLs, oxLDL, nor LDL size were linked to carotid atherosclerosis. Insulin resistance (IR) was associated with an increased severity and extent of coronary atherosclerosis and seemed to be a stronger predictor of coronary atherosclerosis in the distal parts of the coronary tree than in the proximal and mid parts. In the multivariate analysis IR was a significant predictor of the severity of CAD. IR did not correlate with carotid IMT. Maximum and mean carotid IMT were higher in patients with the apoE4 phenotype compared with subjects with the apoE3 phenotype. Likewise, patients with the apoE4 phenotype had a more severe and extensive CAD than individuals with the apoE3 phenotype. Conclusions. 1) There is an association between carotid IMT and the severity and extent of CAD. Carotid IMT seems to be a weaker predictor of coronary atherosclerosis in the proximal parts of the coronary tree than in the mid and distal parts. 2) PON1 activity has an important role in the pathogenesis of coronary atherosclerosis. More importantly, the study illustrates how the protective role of HDL could be modulated by its components such that equivalent serum concentrations of HDL cholesterol may not equate with an equivalent, potential protective capacity. 3) RLP-C in the fasting state is a good marker of postprandial TRLs. Circulating oxLDL increases in CAD patients postprandially. The highly significant positive correlation between postprandial TRLs and postprandial oxLDL suggests that the postprandial state creates oxidative stress. Our findings emphasize the fundamental role of LDL oxidation in the development of atherosclerosis even after inclusion of conventional CAD risk factors. 4) Disturbances in glucose metabolism are crucial in the pathogenesis of coronary atherosclerosis. In fact, subjects with IR are comparable with diabetic subjects in terms of severity and extent of CAD. 5) ApoE polymorphism is involved in the susceptibility to both carotid and coronary atherosclerosis.
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.