36 resultados para Set-Valued Mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a distributed algorithm that finds a maximal edge packing in O(Δ + log* W) synchronous communication rounds in a weighted graph, independent of the number of nodes in the network; here Δ is the maximum degree of the graph and W is the maximum weight. As a direct application, we have a distributed 2-approximation algorithm for minimum-weight vertex cover, with the same running time. We also show how to find an f-approximation of minimum-weight set cover in O(f2k2 + fk log* W) rounds; here k is the maximum size of a subset in the set cover instance, f is the maximum frequency of an element, and W is the maximum weight of a subset. The algorithms are deterministic, and they can be applied in anonymous networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road transport and infrastructure has a fundamental meaning for the developing world. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic and social development in the developing countries. This thesis focuses on studying the present state of road infrastructure and its mapping in the Taita Hills, south-east Kenya. The study is included as a part of the TAITA-project by the Department of Geography, University of Helsinki. The road infrastructure of the study area is studied by remote sensing and GIS based methodology. As the principal dataset, true colour airborne digital camera data from 2004, was used to generate an aerial image mosaic of the study area. Auxiliary data includes SPOT satellite imagery from 2003, field spectrometry data of road surfaces and relevant literature. Road infrastructure characteristics are interpreted from three test sites using pixel-based supervised classification, object-oriented supervised classifications and visual interpretation. Road infrastructure of the test sites is interpreted visually from a SPOT image. Road centrelines are then extracted from the object-oriented classification results with an automatic vectorisation process. The road infrastructure of the entire image mosaic is mapped by applying the most appropriate assessed data and techniques. The spectral characteristics and reflectance of various road surfaces are considered with the acquired field spectra and relevant literature. The results are compared with the experimented road mapping methods. This study concludes that classification and extraction of roads remains a difficult task, and that the accuracy of the results is inadequate regardless of the high spatial resolution of the image mosaic used in this thesis. Visual interpretation, out of all the experimented methods in this thesis is the most straightforward, accurate and valid technique for road mapping. Certain road surfaces have similar spectral characteristics and reflectance values with other land cover and land use. This has a great influence for digital analysis techniques in particular. Road mapping is made even more complicated by rich vegetation and tree canopy, clouds, shadows, low contrast between roads and surroundings and the width of narrow roads in relation to the spatial resolution of the imagery used. The results of this thesis may be applied to road infrastructure mapping in developing countries on a more general context, although with certain limits. In particular, unclassified rural roads require updated road mapping schemas to intensify road transport possibilities and to assist in the development of the developing world.