37 resultados para Microalgal cultivation
Resumo:
Agriculture’s contribution to climate change is controversial as it is a significant source of greenhouse gases but also a sink of carbon. Hence its economic and technological potential to mitigate climate change have been argued to be noteworthy. However, social profitability of emission mitigation is a result from factors among emission reductions such as surface water quality impact or profit from production. Consequently, to value comprehensive results of agricultural climate emission mitigation practices, these co-effects to environment and economics should be taken into account. The objective of this thesis was to develop an integrated economic and ecological model to analyse the social welfare of crop cultivation in Finland on distinctive cultivation technologies, conventional tillage and conservation tillage (no-till). Further, we ask whether it would be privately or socially profitable to allocate some of barley cultivation for alternative land use, such as green set-aside or afforestation, when production costs, GHG’s and water quality impacts are taken into account. In the theoretical framework we depict the optimal input use and land allocation choices in terms of environmental impacts and profit from production and derive the optimal tax and payment policies for climate and water quality friendly land allocation. The empirical application of the model uses Finnish data about production cost and profit structure and environmental impacts. According to our results, given emission mitigation practices are not self-evidently beneficial for farmers or society. On the contrary, in some cases alternative land allocation could even reduce social welfare, profiting conventional crop cultivation. This is the case regarding mineral soils such as clay and silt soils. On organic agricultural soils, climate mitigation practices, in this case afforestation and green fallow give more promising results, decreasing climate emissions and nutrient runoff to water systems. No-till technology does not seem to profit climate mitigation although it does decrease other environmental impacts. Nevertheless, the data behind climate emission mitigation practices impact to production and climate is limited and partly contradictory. More specific experiment studies on interaction of emission mitigation practices and environment would be needed. Further study would be important. Particularly area specific production and environmental factors and also food security and safety and socio-economic impacts should be taken into account.
Resumo:
Agriculture is an economic activity that heavily relies on the availability of natural resources. Through its role in food production agriculture is a major factor affecting public welfare and health, and its indirect contribution to gross domestic product and employment is significant. Agriculture also contributes to numerous ecosystem services through management of rural areas. However, the environmental impact of agriculture is considerable and reaches far beyond the agroecosystems. The questions related to farming for food production are, thus, manifold and of great public concern. Improving environmental performance of agriculture and sustainability of food production, sustainabilizing food production, calls for application of wide range of expertise knowledge. This study falls within the field of agro-ecology, with interphases to food systems and sustainability research and exploits the methods typical of industrial ecology. The research in these fields extends from multidisciplinary to interdisciplinary and transdisciplinary, a holistic approach being the key tenet. The methods of industrial ecology have been applied extensively to explore the interaction between human economic activity and resource use. Specifically, the material flow approach (MFA) has established its position through application of systematic environmental and economic accounting statistics. However, very few studies have applied MFA specifically to agriculture. The MFA approach was used in this thesis in such a context in Finland. The focus of this study is the ecological sustainability of primary production. The aim was to explore the possibilities of assessing ecological sustainability of agriculture by using two different approaches. In the first approach the MFA-methods from industrial ecology were applied to agriculture, whereas the other is based on the food consumption scenarios. The two approaches were used in order to capture some of the impacts of dietary changes and of changes in production mode on the environment. The methods were applied at levels ranging from national to sector and local levels. Through the supply-demand approach, the viewpoint changed between that of food production to that of food consumption. The main data sources were official statistics complemented with published research results and expertise appraisals. MFA approach was used to define the system boundaries, to quantify the material flows and to construct eco-efficiency indicators for agriculture. The results were further elaborated for an input-output model that was used to analyse the food flux in Finland and to determine its relationship to the economy-wide physical and monetary flows. The methods based on food consumption scenarios were applied at regional and local level for assessing feasibility and environmental impacts of relocalising food production. The approach was also used for quantification and source allocation of greenhouse gas (GHG) emissions of primary production. GHG assessment provided, thus, a means of crosschecking the results obtained by using the two different approaches. MFA data as such or expressed as eco-efficiency indicators, are useful in describing the overall development. However, the data are not sufficiently detailed for identifying the hot spots of environmental sustainability. Eco-efficiency indicators should not be bluntly used in environmental assessment: the carrying capacity of the nature, the potential exhaustion of non-renewable natural resources and the possible rebound effect need also to be accounted for when striving towards improved eco-efficiency. The input-output model is suitable for nationwide economy analyses and it shows the distribution of monetary and material flows among the various sectors. Environmental impact can be captured only at a very general level in terms of total material requirement, gaseous emissions, energy consumption and agricultural land use. Improving environmental performance of food production requires more detailed and more local information. The approach based on food consumption scenarios can be applied at regional or local scales. Based on various diet options the method accounts for the feasibility of re-localising food production and environmental impacts of such re-localisation in terms of nutrient balances, gaseous emissions, agricultural energy consumption, agricultural land use and diversity of crop cultivation. The approach is applicable anywhere, but the calculation parameters need to be adjusted so as to comply with the specific circumstances. The food consumption scenario approach, thus, pays attention to the variability of production circumstances, and may provide some environmental information that is locally relevant. The approaches based on the input-output model and on food consumption scenarios represent small steps towards more holistic systemic thinking. However, neither one alone nor the two together provide sufficient information for sustainabilizing food production. Environmental performance of food production should be assessed together with the other criteria of sustainable food provisioning. This requires evaluation and integration of research results from many different disciplines in the context of a specified geographic area. Foodshed area that comprises both the rural hinterlands of food production and the population centres of food consumption is suggested to represent a suitable areal extent for such research. Finding a balance between the various aspects of sustainability is a matter of optimal trade-off. The balance cannot be universally determined, but the assessment methods and the actual measures depend on what the bottlenecks of sustainability are in the area concerned. These have to be agreed upon among the actors of the area
Resumo:
In this study the over 350 macrofossil samples, containing over 2300 charred plant remains from an Iron Age settlement containing fossil fields in Mikkeli Orijärvi Kihlinpelto, were studied archaeobotanically. The aim was to get more information about subsistence strategies, especially agriculture and study differences in the plant combinations in the different structures and use the archaeobotanical theory to interpret these structures. The methodological question was to study the taphonomy of the charred plant material. The results gave a diverse impression of the agriculture and subsistence strategies of the settlement in Orijärvi, where barley was the most important cereal with rye, wheat and oat cultivated as minor crops. The arable weed assemblage indicates that the fields were situated in different kinds of soils and the crops were cultivated when different kind of weather conditions were prevailing. Ergot was found with the cereals, and it was growing on some of the arable crops and it also indicates wet climate. Hemp and flax were cultivated and wild plants were collected. The meadow and wetland plants found in the material derive most probably from animal fodder. Tubers of bulbous oat-grass were interesting, because they are usually found in graves. Comparison with other Iron Age settlements and graves indicates that the plant material found from the ancient field layers derives most probably from dwellings and graves, which were taken into cultivation.
Resumo:
Nurmiheinien merkitys maailmanlaajuisesti on merkittävä, sillä noin 69 % maapallon peltopinta-alasta on pysyvää laidunmaata tai niittyä. Suomessa nurmien osuus on noin 29 %, ja tuotanto perustuu pääosin intensiiviseen säilörehuntuotantoon. Yleisin nurmiheinälaji Suomessa on timotei (Phleum pratense ssp. pratense L.). Timotei on talvenkestävä ja soveltuu siksi pohjoisiin kasvuoloihin. Timoteilajikkeita jalostettaessa pohjoista alkuperää olevia vanhempaislinjoja käytetään hyvän talvenkestävyyden varmistamiseksi, eteläisiä tavoiteltaessa nopeaa kasvurytmiä. Ilmaston muutoksen ennustetaan lisäävän erilaisia äärioloja kuten myrskyjä ja sateita. Vuorokauden keskilämpötila nousee ja kasvukausi pidentyy. Lisäksi talvet muuttuvat sateisemmiksi. Muutokset näkyvät erityisesti pohjoisissa kasvuympäristöissä. Tutkimuksessa haluttiinkin selvittää eri alkuperää edustavien timoteilajikkeiden ja linjojen kylmänkestävyyttä, kasvu-, ja kehitysnopeutta sekä vernalisaation vaikutusta. Lisäksi tutkittiin syysviljojen vernalisaatiovasteen mittaamiseen käytettyjen menetelmien soveltuvuutta nurmille. Tutkimukseen kuului kaksivuotinen peltokoe sekä kasvatuskaappikoe. Vernalisaatio nopeutti timotein kasvua ja kehitystä. Tutkimuksen perusteella eteläistä alkuperää olevilla lajikkeilla kasvu- ja kukintavalmius oli olemassa ilman vernalisaatiota. Pohjoisilla lajikkeilla oli suurempi vernalisaatiovaste ja niiden kukkiminen ja kasvu nopeutui vernalisaation myötä. Vernalisaatiolla oli vaikutusta myös kasvuston rakenteeseen. Generatiivisten versojen määrä lisääntyi vernalisaation myötä, kun taas vegetatiivisten versojen määrä väheni. Kylmänkestävyys oli tutkimuksen perusteella riippuvainen syksyn karaistumisjakson pituudesta sekä jakson lämpösummasta (FH-COLD). Korkea keskilämpötila ja lyhyt karaistumisjakso heikensivät kylmänkestävyyttä. Vastaavasti karaistumiskauden lämpötilan ollessa välillä 0 °C:ta ja + 5 °C:ta ja jakson pituuden kasvaessa kylmänkestävyys lisääntyi. Tutkimuksen perusteella vernalisaatiolla oli selvä vaikutus timotein kasvuun ja kehitykseen. Pohjoista alkuperää olevat timoteit reagoivat vernalisaatioon eteläisiä enemmän. Osa pohjoisista linjoista vaati vernalisaation generatiivisten versojen muodostumiseen. Syysviljojen vernalisaatiovasteen mittausmenetelmät soveltuvat osin myös puhtaiden timoteilajikkeiden vernalisaation seurantaan.
Resumo:
Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.
Resumo:
Kasvit ottavat vettä parhaiten kasteluravinneliuoksesta, jonka ravinnepitoisuus on pieni. Intensiivisessä kasvihuonetuotannossa käytetään silti kastelulannoituksessa usein korkeita ravinnepitoisuuksia ravinnepuutosten ja satotappioiden välttämiseksi. Jakojuuriviljelyssä kasvin juuriston annetaan kasvaa kahteen erilliseen kasvualustaosioon. Tällöin toiselle puolelle annetaan johtokyvyltään väkevää ja toiselle puolelle laimeaa ravinneliuosta. Erityisesti kasvihuonekurkun, joka on herkkä kasvualustan suolaisuuden aiheuttamille vedensaantiongelmille, on todettu hyötyvän tästä tekniikasta, mikä näkyy kasvaneina satoina. Tämän MTT Piikkiössä toteutetun kasvihuonekurkun jakojuuriviljelytutkimuksen tavoitteena oli tarkentaa tekniikkaa erityisesti kasteluliuosten johtokyvyn osalta. Yhtenäisjuuriviljelyn ja perinteisen jakojuuriviljelyn lisäksi kokeessa oli kaksi jakojuuriviljelykäsittelyä, joissa ravinneliuosväkevyyksiä vaihdettiin väliajoin juuriston toimintakyvyn parantamiseksi. Erillisessä osakokeessa tutkittiin erilaisten johtokyky-yhdistelmien vaikutusta kasvihuonekurkun vegetatiiviseen kasvuun maanpäällisten ja -alaisten kasvinosien välillä sekä juurten morfologiaan ja anatomiaan. Tulokset osoittivat, että jakojuuriviljely lisäsi kasvihuonekurkun sadontuottoa jopa 16 %, mutta ei vaikuttanut koko viljelykauden veden tai ravinteiden ottoon. Yhtenäisjuuriviljelyssä muodostui eniten piikkikärkisiä hedelmiä, mikä viittaa vedensaantiongelmiin haihdutustarpeen ollessa suurin. Viljelytekniikalla ei ollut vaikutusta kasvien vegetatiiviseen kasvuun tai kasvuston rakenteeseen. Lehtiruodeista tehdyt nitraatti- ja kaliummittaukset osoittivat, ettei kasteluliuosten ravinnepitoisuuksilla ollut vaikutusta juurten ravinteiden ottoon. Erilaisilla johtokyky-yhdistelmillä oli huomattavampi vaikutus kasvihuonekurkun juurten painoon kuin verson painoon tai varren pituuskasvuun. Lehtiruotianalyysit viittasivat ravinteiden erilaiseen allokointiin eri johtokyky-yhdistelmissä. Korkeiden johtokykyjen aiheuttama osmoottinen stressi johti muutoksiin juurten morfologiassa ja anatomiassa. Tulosten perusteella jakojuuriviljely paransi kehittyvien hedelmien kohdevahvuutta suhteessa muihin kohteisiin vaikuttamatta vegetatiiviseen kasvuun. Kun laimean ja väkevän ravinneliuoksen puolia vaihdettiin, juuristo otti joustavasti vettä ja ravinteita olosuhteiden määräämästä edullisemmasta johtokyvystä, jolloin kasvihuonekurkun viljelyssä saavutettiin merkittävä satoetu. Juuriston jakaminen vaikuttanee kasvien hormoniaineenvaihduntaan ja voi heikentää juuriston kasvua heikentämättä sen toimintakykyä, jolloin yhteyttämistuotteita kohdennetaan tehokkaammin maanpäällisten osien kasvuun.
Resumo:
The aim of this thesis was to study the crops currently used for biofuel production from the following aspects: 1. what should be the average yield/ ha to reach an energy balance at least 0 or positive 2. what are the shares of the primary and secondary energy flows in agriculture, transport, processing and usage, and 3. overall effects of biofuel crop cultivation, transport, processing and usage. This thesis concentrated on oilseed rape biodiesel and wheat bioethanol in the European Union, comparing them with competing biofuels, such as corn and sugarcane-based ethanol, and the second generation biofuels. The study was executed by comparing Life Cycle Assessment-studies from the EU-region and by analyzing them thoroughly from the differences viewpoint. The variables were the following: energy ratio, hectare yield (l/ha), impact on greenhouse gas emissions (particularly CO2), energy consumption in crop growing and processing one hectare of a particular crop to biofuel, distribution of energy in processing and effects of the secondary energy flows, like e.g. wheat straw. Processing was found to be the most energy consuming part in the production of biofuels. So if the raw materials will remain the same, the development will happen in processing. First generation biodiesel requires esterification, which consumes approximately one third of the process energy. Around 75% of the energy consumed in manufacturing the first generation wheat-based ethanol is spent in steam and electricity generation. No breakthroughs are in sight in the agricultural sector to achieve significantly higher energy ratios. It was found out that even in ideal conditions the energy ratio of first generation wheat-based ethanol will remain slightly under 2. For oilseed rape-based biodiesel the energy ratios are better, and energy consumption per hectare is lower compared to wheat-based ethanol. But both of these are lower compared to e.g. sugarcane-based ethanol. Also the hectare yield of wheat-based ethanol is significantly lower. Biofuels are in a key position when considering the future of the world’s transport sector. Uncertainties concerning biofuels are, however, several, like the schedule of large scale introduction to consumer markets, technologies used, raw materials and their availability and - maybe the biggest - the real production capacity in relation to the fuel consumption. First generation biofuels have not been the expected answer to environmental problems. Comparisons made show that sugarcane-based ethanol is the most prominent first generation biofuel at the moment, both from energy and environment point of view. Also palmoil-based biodiesel looks promising, although it involves environmental concerns as well. From this point of view the biofuels in this study - wheat-based ethanol and oilseed rape-based biodiesel - are not very competitive options. On the other hand, crops currently used for fuel production in different countries are selected based on several factors, not only based on thier relative general superiority. It is challenging to make long-term forecasts for the biofuel sector, but it can be said that satisfying the world's current and near future traffic fuel consumption with biofuels can only be regarded impossible. This does not mean that biofuels shoud be rejected and their positive aspects ignored, but maybe this reality helps us to put them in perspective. To achieve true environmental benefits through the usage of biofuels there must first be a significant drop both in traffic volumes and overall fuel consumption. Second generation biofuels are coming, but serious questions about their availability and production capacities remain open. Therefore nothing can be taken for granted in this issue, expect the need for development.