117 resultados para HETEROGENEOUS GROWTH
Resumo:
Selenium (Se) has been demonstrated to be an essential trace element for maintenance of animal and human health. Although it has not been confirmed to be an essential micronutrient in higher plants, there is increasing evidence that Se functions as an antioxidant in plants. Selenium has been shown to exert a beneficial effect on crop growth and promotes stress tolerance at low concentrations. However, the specific physiological mechanisms that underlie the positive effects of Se in plants have not been clearly elucidated. The aims of this study were to determine the Se concentration in potato (Solanum tuberosum L.) and the effects of Se on the accumulation of carbohydrates, growth and yield in potato plants. An additional aim was to study the impact of Se on the total glycoalkaloid concentration in immature potato tubers. The distribution of Se in different biochemical Se fractions and the effect of storage on the Se concentration were studied in Se-enriched tubers. Furthermore, the effect of Se on raw darkening and translocation of Se from seed tubers to the next tuber generation was investigated. Due to the established anti-ageing properties of Se, it was of interest to study if Se affects physiological age and growth vigour of seed tubers. The Se concentrations in the upper leaves, roots, stolons and tubers of potato increased with increasing Se supplementation. The highest Se concentration was reached in young upper leaves, roots and stolons, indicating that added selenate was efficiently utilized and taken up at an early stage. During the growing period the Se concentration declined in the aerial parts, roots and stolons of potato plants whereas an intensive accumulation took place in immature and mature tubers. Selenium increased carbohydrate accumulation in the young upper leaves and in stolons, roots and tubers at maturity. This could not be explained by increased production of photoassimilates as net photosynthesis did not differ among Se treatments. The Se treated plants produced higher tuber yields than control plants, and at the highest Se concentration (0.3 mg kg-1) lower numbers of larger tubers were harvested. Increased yield of Se treated plants suggested that Se may enhance the allocation of photoassimilates for tuber growth, acting as a strong sink for both Se and for carbohydrates. Similarly as for other plant species, the positive impact of Se on the yield of potato plants could be related to its antioxidative effect in delaying senescence. The highest Se supplementation (0.9 mg kg-1) slightly decreased the glycoalkaloid concentration of immature tubers. However, at this level the Se concentration in tubers was about 20 µg g-1 DW. A 100 g consumption of potato would provide about 500 mg of Se, which exceeds the upper safe intake level of 400 µg per day for human dietary. The low Se applications (0.0035 and 0.1 mg kg-1) diminished and retarded the degree of raw darkening in tubers stored for one and eight months, which can be attributed to the antioxidative properties of Se. The storage for 1 to 12 months did not affect the Se concentrations of tubers. In the Se enriched tubers Se was allocated to the organic Se fraction, indicating that it was incorporated into organic compounds in tubers. Elevated Se concentration in the next-generation tubers produced by the Se enriched seed tubers indicated that Se could be translocated from the seed tubers to the progeny. In the seed tubers stored for 8 months, at high levels, Se had some positive effects on the growth vigour of sprouts, but Se had no consistent effect on the growth vigour of seed tubers of optimal physiological age. These results indicate that Se is a beneficial trace element in potato plants that exerts a positive effect on yield formation and improves the processing and storage quality of table potato tubers. These positive effects of Se are, however, dependent on the Se concentration and the age of the potato plant and tuber.
Resumo:
The aim of this thesis was to increase our knowledge about the effects of seed origin on the timing of height growth cessation and field performance of silver birch from different latitudes, with special attention paid to the browsing damage by moose in young birch plantations. The effect of seed origin latitude and sowing time on timing of height growth cessation of first-year seedlings was studied in a greenhouse experiment with seven seed origins (lat. 58º - 67ºN). Variation in critical night length (CNL) for 50 % bud set within two latitudinally distant stands (60º and 67ºN) was studied in three phytotron experiments. Browsing by moose on 5-11 -year-old silver birch saplings from latitudinally different seed origins (53º - 67ºN) was studied in a field experiment in southern Finland. Yield and stem quality of 22-year-old silver birch trees of Baltic, Finnish and Russian origin (54º - 63ºN) and the effect of latitudinal seed transfers were studied in two provenance trials at Tuusula, southern and Viitasaari, central Finland. The timing of height growth cessation depended systematically on latitude of seed origin and sowing date. The more northern the seed origin, the earlier the growth cessation and the shorter the growth period. Later sowing dates delayed growth cessation but also shortened the growth period. The mean CNL of the southern ecotype was longer, 6.3 ± 0.2 h (95 % confidence interval), than that of the northern ecotype, 3.1 ± 0.3 h. Within-ecotype variance of the CNL was higher in the northern ecotype (0.484 h2) than in the southern ecotype (0.150 h2). Browsing by moose decreased with increasing latitude of seed origin and sapling height. Origins transferred from more southern latitudes were more heavily browsed than the more northern native ones. Southern Finnish seed origins produced the highest volume per unit area in central Finland (lat. 63º11'N). Estonian and north Latvian stand seed origins, and the southern Finnish plus tree origins, were the most productive ones in southern Finland (lat. 60º21'N). Latitudinal seed transfer distance had a significant effect on survival, stem volume/ha and proportion of trees with a stem defect. The relationship of both survival and stem volume/ha to the latitudinal seed transfer distance was curvilinear. Volume was increased by transferring seed from ca. 2 degrees of latitude from the south. A longer transfer from the south, and transfer from the north, decreased the yield. The proportion of trees with a stem defect increased linearly in relation to the latitudinal seed transfer distance from the south.
Resumo:
Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.
Resumo:
Valko- ja ruskolahosienet tunnetaan luonnossa tehokkaimpina puun ja karikkeen lignoselluloosan lahottajina. Valkolahosienet pystyvät hajottamaan kaikkia puun osia: ligniiniä, selluloosaa ja hemiselluloosaa. Selektiivisesti ligniiniä hajottavat sienet lahottavat puusta suhteessa enemmän vaikeasti hajoavaa ligniiniä kuin selluloosaa tai hemiselluloosaa, jolloin jäljelle jää valkoista ja miltei puhdasta selluloosaa. Bioteknisissä sovelluksissa juuri selektiviiviset valkolahottajat ovat kiinnostavia. Niiden avulla voidaan puuhaketta esikäsitellä esimerkiksi paperinvalmistuksessa haitallisen ligniinin poistamiseksi. Ruskolahosienet ovat huomattavia puun, puutavaran ja puisten rakenteiden lahottajia, kuten tässä työssä käytetty Gloeophyllum trabeum (saunasieni ) ja Poria (Postia) placenta (istukkakääpä). Ruskolahosienet hajottavat puusta hemiselluloosan lisäksi selluloosaa, jolloin jää jäljelle ruskea ja jauhomaiseksi mureneva ligniini. Ruskolahosienet muovaavat ligniiniä jonkin verran. Kahden ruskolahosienen G. trabeumin ja P. placentan lisäksi tutkittiin valkolahosieniä, joista Ceriporiopsis subvermispora (karstakääpä) ja harvinainen Physisporinus rivulosus -sieni (talikääpä) hajottavat ligniiniä erittäin selektiivisesti. Phanerochaete chrysosporium on kaikkialla paljon tutkittu sieni, ja Phlebia radiata valkolahosientä (rusorypykkä) on tutkittu paljon mikrobiologian osastolla. Lisäksi tutkittiin Phlebia tremellosa -sienten (hytyrypykkä) ligninolyyttisten entsyymien tuottoa ja 14C-leimatun synteettisen ligniinin (DHP) hajotusta. P. radiata ja P. tremellosa -sienten on todettu aiemmin hajottavan ligniiniä selektiivisesti. Työssä selvitettiin miten sienten kasvua voi mitata, miten vertailukelpoisia eri mittaamismenetelmillä saadut tulokset ovat ja ilmenevätkö sienten aktiivisimmat kasvuvaiheet samaan aikaan eri menetelmillä mitattuna. Tärkeimmät tulokset olivat seuraavat havainnot: (i) P. radiata ja P. tremellosa -sienikannat tuottivat ligniini- ja mangaaniperoksidaasientsyymejä (LiP ja MnP) sekä lakkaasia, ja sienistä puhdistettiin 2-3 LiP- ja P. radiatasta yksi MnP-entsyymi; (ii) P. tremellosa -sienet hajottivat leimattua synteettistä ligniiniä (DHP) yhtä hyvin kuin paljon tutkitut P. chrysosporium ja P. radiata -sienet; (iii) puu, sienen luonnollinen kasvualusta, lisäsi valkolaho- ja ruskolahosienten demetoksylaatiota [O14CH3]-leimatusta ligniinin malliyhdisteestä 14CO2:ksi ilman puuta olleeseen alustaan verrattuna; (iv) demetoksylaatio (14CO2:n tuotto) oli normaalissa ilma-atmosfäärissä useimmiten parempi happeen verrattuna; (v) hapessa paras 14CO2:n tuotto saatiin puupalakasvatuksissa, joihin oli lisätty ravinnetyppeä tai typen lisäksi glukoosia sekä valkolaho- että ruskolahosienillä; (vi) ilmassa 14CO2:n tuotto oli puulla voimakkainta valkolahosienillä ilman lisäravinteita, kun taas G. trabeum -sienellä se oli yhtä hyvä eri alustoissa; (vii) biomassan muodostuminen rihmastojen ergosterolipitoisuuksista mitattuna oli ruskolahosienillä parempi kuin valkolahosienillä; (viii) ja biomassojen huippupitoisuudet olivat 6:lla sienellä eri suuruisia ja niiden maksimimäärien ajankohdat vaihtelivat viiden viikon kasvatusten kuluessa. Mikrobiologian osastolla Viikissä eristetty ja paljon tutkittu P. radiata -valkolahosieni oli mukana kaikissa tehdyissä kokeissa. Sienen LiP-aktiivisuus ja 14CO2:n tuotto 14C-rengas-leimatusta synteettisestä ligniinistä (DHP) korreloivat erittäin hyvin. Biomassan muodostuminen ergosterolilla määritettynä tuki hyvin entsyymiaktiivisuusmittauksilla ja isotooppikasvatuksilla saatuja tuloksia.
Resumo:
Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for the xylE gene were designed for TOL plasmid detection. Amplified enzyme-coding DNA restriction analysis (AEDRA) with AluI was used to profile both TOL plasmids (xylE primers) and, in general, aromatics-degrading plasmids (C230 primers). The sensitivity of the direct monitoring of TOL plasmids in soil was enhanced by nested C23O-xylE-PCR. Rhizosphere bacteria were isolated from the greenhouse and field lysimeter experiments. High genetic diversity was observed among the 50 isolated, m-toluate tolerating rhizosphere bacteria in the form of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. The inoculum Pseudomonas putida PaW85/pWW0 was not found in the rhizosphere samples. Even if there were no ecological niches available for the bioaugmentation bacterium itself, its conjugative catabolic plasmid might have had some additional value for other bacterial species and thus, for rhizoremediation. Only 10 to 20% of the isolated, m-toluate tolerating bacterial strains were also able to degrade m-toluate. TOL plasmids were a major group of catabolic plasmids among these bacteria. The ability to degrade m-toluate by using enzymes encoded by a TOL plasmid was detected only in species of the genus Pseudomonas, and the best m-toluate degraders were these Pseudomonas species. Strain-specific differences in degradation abilities were found for P.oryzihabitans and P. migulae: some of these strains harbored a TOL plasmid - a new finding observed in this work, indicating putative horizontal plasmid transfer in the rhizosphere. One P. oryzihabitans strain harbored the pWW0 plasmid that had probably conjugated from the bioaugmentation Pseudomonas. Some P. migulae and P. oryzihabitans strains seemed to harbor both the pWW0- and the pDK1-type TOL plasmid. Alternatively, they might have harbored a TOL plasmid with both the pWW0- and the pDK1-type xylE gene. The breakdown of m-toluate by gram-negative bacteria was not restricted to the TOL pathway. Also some gram-positive Rhodococcus erythropolis and Arthrobacter aurescens strains were able to degrade m-toluate in the absence of a TOL plasmid. Three aspects of the rhizosphere effect of G. orientalis were manifested in oil-contaminated soil in the field: 1) G. orientalis and Pseudomonas bioaugmentation increased the amount of rhizosphere bacteria. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria indicating an increase in degradation potential. 2) Also the bacterial diversity, when measured as the amount of ribotypes, was increased in the Galega rhizosphere with or without Pseudomonas bioaugmentation. However, the diversity of m-toluate utilizing bacteria did not significantly increase. At the community level, by using the 16S rRNA gene PCR-DGGE method, the highest diversity of species was also observed in vegetated soils compared with non-vegetated soils. Diversified communities may best guarantee the overall success in rhizoremediation by offering various genetic machineries for catabolic processes. 3) At the end of the experiment, no TOL plasmid could be detected by direct DNA analysis in soil treated with both G. orientalis and Pseudomonas. The detection limit for TOL plasmids was encountered indicating decreased amount of degradation plasmids and thus, the success of rhizoremediation. The use of G. orientalis for rhizoremediation is unique. In this thesis new information was obtained about the rhizosphere effect of Galega orientalis in BTEX contaminated soils. The molecular biomonitoring methods can be applied for several purposes within environmental biotechnology, such as for evaluating the intrinsic biodegradation potential, monitoring the enhanced bioremediation, and estimating the success of bioremediation. Environmental protection by using nature's own resources and thus, acting according to the principle of sustainable development, would be both economically and environmentally beneficial for society. Keywords: molecular biomonitoring, genetic fingerprinting, soil bacteria, bacterial diversity, TOL plasmid, catabolic genes, horizontal gene transfer, rhizoremediation, rhizosphere effect, Galega orientalis, aerobic biodegradation, petroleum hydrocarbons, BTEX
Resumo:
The objective was to measure productivity growth and its components in Finnish agriculture, especially in dairy farming. The objective was also to compare different methods and models - both parametric (stochastic frontier analysis) and non-parametric (data envelopment analysis) - in estimating the components of productivity growth and the sensitivity of results with respect to different approaches. The parametric approach was also applied in the investigation of various aspects of heterogeneity. A common feature of the first three of five articles is that they concentrate empirically on technical change, technical efficiency change and the scale effect, mainly on the basis of the decompositions of Malmquist productivity index. The last two articles explore an intermediate route between the Fisher and Malmquist productivity indices and develop a detailed but meaningful decomposition for the Fisher index, including also empirical applications. Distance functions play a central role in the decomposition of Malmquist and Fisher productivity indices. Three panel data sets from 1990s have been applied in the study. The common feature of all data used is that they cover the periods before and after Finnish EU accession. Another common feature is that the analysis mainly concentrates on dairy farms or their roughage production systems. Productivity growth on Finnish dairy farms was relatively slow in the 1990s: approximately one percent per year, independent of the method used. Despite considerable annual variation, productivity growth seems to have accelerated towards the end of the period. There was a slowdown in the mid-1990s at the time of EU accession. No clear immediate effects of EU accession with respect to technical efficiency could be observed. Technical change has been the main contributor to productivity growth on dairy farms. However, average technical efficiency often showed a declining trend, meaning that the deviations from the best practice frontier are increasing over time. This suggests different paths of adjustment at the farm level. However, different methods to some extent provide different results, especially for the sub-components of productivity growth. In most analyses on dairy farms the scale effect on productivity growth was minor. A positive scale effect would be important for improving the competitiveness of Finnish agriculture through increasing farm size. This small effect may also be related to the structure of agriculture and to the allocation of investments to specific groups of farms during the research period. The result may also indicate that the utilization of scale economies faces special constraints in Finnish conditions. However, the analysis of a sample of all types of farms suggested a more considerable scale effect than the analysis on dairy farms.
Resumo:
Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.