38 resultados para Glycogen - Metabolism
Resumo:
The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.
Pathophysiology of adipose tissue metabolism and atherosclerosis in familial combined hyperlipidemia
Resumo:
Part I: Parkinson’s disease is a slowly progressive neurodegenerative disorder in which particularly the dopaminergic neurons of the substantia nigra pars compacta degenerate and die. Current conventional treatment is based on restraining symptoms but it has no effect on the progression of the disease. Gene therapy research has focused on the possibility of restoring the lost brain function by at least two means: substitution of critical enzymes needed for the synthesis of dopamine and slowing down the progression of the disease by supporting the functions of the remaining nigral dopaminergic neurons by neurotrophic factors. The striatal levels of enzymes such as tyrosine hydroxylase, dopadecarboxylase and GTP-CH1 are decreased as the disease progresses. By replacing one or all of the enzymes, dopamine levels in the striatum may be restored to normal and behavioral impairments caused by the disease may be ameliorated especially in the later stages of the disease. The neurotrophic factors glial cell derived neurotrophic factor (GDNF) and neurturin have shown to protect and restore functions of dopaminergic cell somas and terminals as well as improve behavior in animal lesion models. This therapy may be best suited at the early stages of the disease when there are more dopaminergic neurons for neurotrophic factors to reach. Viral vector-mediated gene transfer provides a tool to deliver proteins with complex structures into specific brain locations and provides long-term protein over-expression. Part II: The aim of our study was to investigate the effects of two orally dosed COMT inhibitors entacapone (10 and 30 mg/kg) and tolcapone (10 and 30 mg/kg) with a subsequent administration of a peripheral dopadecarboxylase inhibitor carbidopa (30 mg/kg) and L- dopa (30 mg/kg) on dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens of freely moving rats using dual-probe in vivo microdialysis. Earlier similarly designed studies have only been conducted in the dorsal striatum. We also confirmed the result of earlier ex vivo studies regarding the effects of intraperitoneally dosed tolcapone (30 mg/kg) and entacapone (30 mg/kg) on striatal and hepatic COMT activity. The results obtained from the dorsal striatum were generally in line with earlier studies, where tolcapone tended to increase dopamine and DOPAC levels and decrease HVA levels. Entacapone tended to keep striatal dopamine and HVA levels elevated longer than in controls and also tended to elevate the levels of DOPAC. Surprisingly in the nucleus accumbens, dopamine levels after either dose of entacapone or tolcapone were not elevated. Accumbal DOPAC levels, especially in the tolcapone 30 mg/kg group, were elevated nearly to the same extent as measured in the dorsal striatum. Entacapone 10 mg/kg elevated accumbal HVA levels more than the dose of 30 mg/kg and the effect was more pronounced in the nucleus accumbens than in the dorsal striatum. This suggests that entacapone 30 mg/kg has minor central effects. Also our ex vivo study results obtained from the dorsal striatum suggest that entacapone 30 mg/kg has minor and transient central effects, even though central HVA levels were not suppressed below those of the control group in either brain area in the microdialysis study. Both entacapone and tolcapone suppressed hepatic COMT activity more than striatal COMT activity. Tolcapone was more effective than entacapone in the dorsal striatum. The differences between dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens may be due to different properties of the two brain areas.
Resumo:
Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.
Resumo:
Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.
Resumo:
In this study we investigated the metabolism, i.e. remodeling and translocation, of the aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). A new method for introduction of exogenous PS and PE molecular species to cultured cells was developed, and combined with mass spectrometry it enabled more detailed follow-up of the metabolism of single molecular species than previously. We found that I) exogenous PS and PE molecular species can be efficiently introduced to cultured cells without compromising cell integrity, II) PS and PE molecular species are remodeled by several phospholipases displaying selectivity based on phopholipid head group and acyl chain composition, III) PS decarboxylase (PSD) and Kennedy pathways provide a different PE molecular species composition to the cellular PE pool. In addition, PE species produced by these pathways are translocated from the site of synthesis to other cell compartments depending on their acyl chain composition. The data obtained in the present study helps to understand cellular phospholipid metabolism in more depth. The data show that effective labeling of cultured cells by exogenous phospholipids does not compromise cell viability and may be used to disturb cellular phospholipid composition to study lipid homeostasis. Remodeling and translocation of PS and PE molecular species is highly selective. The developed method and mass- spectrometric techniques may be used in future studies to understand disturbances in lipid homeostasis for example in diabetes mellitus, thus opening doors to optional scientific approaches to study mechanisms behind pathologies related to lipid disturbances.