37 resultados para Chemical product
Resumo:
Many Finnish IT companies have gone through numerous organizational changes over the past decades. This book draws attention to how stability may be central to software product development experts and IT workers more generally, who continuously have to cope with such change in their workplaces. It does so by analyzing and theorizing change and stability as intertwined and co-existent, thus throwing light on how it is possible that, for example, even if ‘the walls fall down the blokes just code’ and maintain a sense of stability in their daily work. Rather than reproducing the picture of software product development as exciting cutting edge activities and organizational change as dramatic episodes, the study takes the reader beyond the myths surrounding these phenomena to the mundane practices, routines and organizings in product development during organizational change. An analysis of these ordinary practices offers insights into how software product development experts actively engage in constructing stability during organizational change through a variety of practices, including solidarity, homosociality, close relations to products, instrumental or functional views on products, preoccupations with certain tasks and humble obedience. Consequently, the study shows that it may be more appropriate to talk about varieties of stability, characterized by a multitude of practices of stabilizing rather than states of stagnation. Looking at different practices of stability in depth shows the creation of software as an arena for micro-politics, power relations and increasing pressures for order and formalization. The thesis gives particular attention to power relations and processes of positioning following organizational change: how social actors come to understand themselves in the context of ongoing organizational change, how they comply with and/or contest dominant meanings, how they identify and dis-identify with formalization, and how power relations often are reproduced despite dis-identification. Related to processes of positioning, the reader is also given a glimpse into what being at work in a male-dominated and relatively homogeneous work environment looks like. It shows how the strong presence of men or “blokes” of a particular age and education seems to become invisible in workplace talk that appears ‘non-conscious’ of gender.
Resumo:
The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.
Resumo:
Merkittävä osa alkuperäislääkevalmistajien tutkimus- ja tuotekehityskuluista näyttää olevan suunnattu olemassa olevien lääkkeiden kehittämiseen. Tämä voi oletettavasti johtaa kiinnostaviin formulaatiokehitysstrategioihin. Tutkimuksen tarkoituksena oli selvittää, voidaanko farmaseuttisen tuotekehityksen trendejä havaita myönnettyjen myyntilupien perusteella. Tutkimuksen mielenkiinnon kohteena olivat myös suurimpien lääkeyritysten käyttämät elinkaaren hallinnan keinot, joilla suojataan myyvimpiä tuotteita geneeriseltä kilpailulta ja varmistetaan markkinaosuus. Tutkimuksen painopiste oli kiinteissä oraalisissa lääkevalmisteissa. Laadullisten ja määrällisten menetelmien yhdistelmää käytettiin laajan näkökulman saamiseksi tutkittavaan aiheeseen. Suomalaisten myyntilupaviranomaisten haastatteluja käytettiin keräämään taustatietoa tutkimuksen määrällistä osaa varten. Määrällinen osa koostui myyntilupatietokannoista, jotka käsittivät kaikkien menettelyjen kautta Suomessa myönnetyt myyntiluvat, keskitetyn menettelyn kautta EU:ssa myönnetyt myyntiluvat ja maailman kymmenen suurinta lääkeyritystä USA:ssa. Tutkimustulosten perusteella rinnakkaislääkkeiden määrässä tapahtui merkittävä nousu Suomessa kaikkien menettelyjen kautta myönnetyissä myyntiluvissa ja EU:ssa keskitetyn menettelyn kautta myönnetyissä myyntiluvissa vuosina 2000-2010. Tämä muutos saattaa ainakin osaksi johtua lainsäädännöllisistä muutoksista, joilla luotiin kannustimia rinnakkaislääkkeiden käyttöön ja valmistukseen, kuten lääkevaihto ja viitehintajärjestelmä. USA:n tiedot osoittivat suurten lääkevalmistajien kiinnostuksen elinkaaren hallintaan: suurin osa maailman kymmenelle suurimmalle lääkeyritykselle myönnetyistä myyntiluvista vuosina 2005-2010 oli tähän tarkoitukseen. Elinkaaren hallinnan suhde uusiin lääkeaineisiin oli lähes 4:1. Kiinteä oraalinen lääkemuoto on kiistatta kaikista suosituin tapa annostella lääke, minkä vahvistivat sekä arvioijien haastattelut että myyntilupatiedot. Kiinteiden oraalisten rooli oli entistäkin korostuneempi rinnakkaislääkkeiden kohdalla. Kun innovatiivisuutta mitattiin epätyypillisten annosmuotojen määrällä, USA:n tiedot kiinteistä oraalisista lääkemuodoista osoittivat vahvaa innovatiivisuutta Suomen ja EU:n tietoihin verrattuna. Tämä saattaa heijastaa suurten lääkeyritysten innovatiivista tuotevalikoimaa. Epätyypillisten kiinteiden oraalisten annosmuotojen osuus oli huomattavasti pienempi rinnakkaislääkkeissä kuin alkuperäislääkkeissä kaikilla alueilla. Elinkaaren hallinnassa käytetyimmät strategiat olivat uusi formulaatio, uusi vahvuus ja uusi yhdistelmä olemassa olevasta valmisteesta. Kiinteiden oraalisten lääkemuotojen osalta kaksi kolmasosaa uusista elinkaaren hallinnan formulaatioista oli säädellysti vapauttavia valmisteita. Elinkaaren hallinta on olennainen osa suurten lääkeyritysten liiketoimintastrategiaa, ja sen tärkeyttä havainnollistettiin Coreg-tablettien tapausesimerkillä.
Resumo:
Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.
Resumo:
In order to evaluate the influence of ambient aerosol particles on cloud formation, climate and human health, detailed information about the concentration and composition of ambient aerosol particles is needed. The dura-tion of aerosol formation, growth and removal processes in the atmosphere range from minutes to hours, which highlights the need for high-time-resolution data in order to understand the underlying processes. This thesis focuses on characterization of ambient levels, size distributions and sources of water-soluble organic carbon (WSOC) in ambient aerosols. The results show that in the location of this study typically 50-60 % of organic carbon in fine particles is water-soluble. The amount of WSOC was observed to increase as aerosols age, likely due to further oxidation of organic compounds. In the boreal region the main sources of WSOC were biomass burning during the winter and secondary aerosol formation during the summer. WSOC was mainly attributed to a fine particle mode between 0.1 - 1 μm, although different size distributions were measured for different sources. The WSOC concentrations and size distributions had a clear seasonal variation. Another main focus of this thesis was to test and further develop the high-time-resolution methods for chemical characterization of ambient aerosol particles. The concentrations of the main chemical components (ions, OC, EC) of ambient aerosol particles were measured online during a year-long intensive measurement campaign conducted on the SMEAR III station in Southern Finland. The results were compared to the results of traditional filter collections in order to study sampling artifacts and limitations related to each method. To achieve better a time resolution for the WSOC and ion measurements, a particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC). The PILS-TOC-IC provided important data about diurnal variations and short-time plumes, which cannot be resolved from the filter samples. In summary, the measurements made for this thesis provide new information on the concentrations, size distribu-tions and sources of WSOC in ambient aerosol particles in the boreal region. The analytical and collection me-thods needed for the online characterization of aerosol chemical composition were further developed in order to provide more reliable high-time-resolution measurements.