63 resultados para COMMON VARIANTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA ja siinä sijaitsevat geenit ohjaavat kaikkea solujen toimintaa. DNA-molekyyleihin kuitenkin kertyy mutaatioita sekä ympäristön vaikutuksen, että solujen oman toiminnan tuloksena. Mikäli virheitä ei korjata, saattaa tuloksena olla solun muuttuminen syöpäsoluksi. Soluilla onkin käytössä useita DNA-virheiden korjausmekanismeja, joista yksi on ns. mismatch repair (MMR). MMR vastaa DNA:n kahdentumisessa syntyvien virheiden korjauksesta. Periytyvät mutaatiot geeneissä, jotka vastaavat MMR-proteiinien rakentamisesta, aiheuttavat ongelmia DNA:n korjauksessa ja altistavat kantajansa periytyvälle ei-polypoottiselle paksusuolisyöpäoireyhtymälle (hereditary nonpolyposis colorectal cancer, HNPCC). Yleisimmin mutatoituneet MMR-geenit ovat MLH1 ja MSH2. HNPCC periytyy vallitsevasti, eli jo toiselta vanhemmalta peritty geenivirhe altistaa syövälle. MMR-geenivirheen kantaja sairastuu syöpään elämänsä aikana suurella todennäköisyydellä, ja sairastumisikä on vain noin 40 vuotta. Syövälle altistavan geenivirheen löytäminen mutaation kantajilta on hyvin tärkeää, sillä säännöllinen seuranta mahdollistaa kehittymässä olevan kasvaimen havaitsemisen ja poistamisen jo aikaisessa vaiheessa. Tämän on osoitettu alentavan syöpäkuolleisuutta merkittävästi. Varma tieto altistuksen alkuperästä on tärkeä myös niille syöpäsuvun jäsenille, jotka eivät kanna kyseistä mutaatiota. Syövälle altistavien mutaatioiden ohella MMR-geeneistä löydetään säännöllisesti muutoksia, jotka ovat normaalia henkilöiden välistä geneettistä vaihtelua, eikä niiden oleteta lisäävän syöpäaltistusta. Altistavien mutaatioiden erottaminen näistä neutraaleista variaatioista on vaikeaa, mutta välttämätöntä altistuneiden tehokkaan seurannan varmistamiseksi. Tässä väitöskirjassa tutkittiin 18:a MSH2 -geenin mutaatiota. Mutaatiot oli löydetty perheistä, joissa esiintyi paljon syöpiä, mutta niiden vaikutus DNA:n korjaustehoon ja syöpäaltistukseen oli epäselvä. Työssä tutkittiin kunkin mutaation vaikutusta MSH2-proteiinin normaaliin toimintaan, ja tuloksia verrattiin potilaiden ja sukujen kliinisiin tietoihin. Tutkituista mutaatiosta 12 aiheutti puutteita MMR-korjauksessa. Nämä mutaatiot tulkittiin syövälle altistaviksi. Analyyseissä normaalisti toimineet 4 mutaatiota eivät todennäköisesti ole syynä syövän syntyyn kyseisillä perheillä. Tulkinta jätettiin avoimeksi 2 mutaation kohdalla. Tutkimuksesta hyötyivät suoraan kuvattujen mutaatioiden kantajaperheet, joiden geenivirheen syöpäaltistuksesta saatiin tietoa, mahdollistaen perinnöllisyysneuvonnan ja seurannan kohdentamisen sitä tarvitseville. Työ selvensi myös mekanismeja, joilla mutatoitunut MSH2-proteiini voi menettää toimintakykynsä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main aims of evolutionary biology is to explain why organisms vary phenotypically as they do. Proximately, this variation arises from genetic differences and from environmental influences, the latter of which is referred to as phenotypic plasticity. Phenotypic plasticity is thus a central concept in evolutionary biology, and understanding its relative importance in causing the phenotypic variation and differentiation is important, for instance in anticipating the consequences of human induced environmental changes. The aim of this thesis was to study geographic variation and local adaptation, as well as sex ratios and environmental sex reversal, in the common frog (Rana temporaria). These themes cover three different aspects of phenotypic plasticity, which emerges as the central concept for the thesis. The first two chapters address geographic variation and local adaptation in two potentially thermally adaptive traits, namely the degree of melanism and the relative leg length. The results show that although there is an increasing latitudinal trend in the degree of melanism in wild populations across Scandinavian Peninsula, this cline has no direct genetic basis and is thus environmentally induced. The second chapter demonstrates that although there is no linear, latitudinally ordered phenotypic trend in relative leg length that would be expected under Allen s rule an ecogeographical rule linking extremity length to climatic conditions there seems to be such a trend at the genetic level, hidden under environmental effects. The first two chapters thus view phenotypic plasticity through its ecological role and evolution, and demonstrate that it can both give rise to phenotypic variation and hide evolutionary patterns in studies that focus solely on phenotypes. The last three chapters relate to phenotypic plasticity through its ecological and evolutionary role in sex determination, and consequent effects on population sex ratio, genetic recombination and the evolution of sex chromosomes. The results show that while sex ratios are strongly female biased and there is evidence of environmental sex reversals, these reversals are unlikely to have caused the sex ratio skew, at least directly. The results demonstrate that environmental sex reversal can have an effect on the evolution of sex chromosomes, as the recombination patterns between them seem to be controlled by phenotypic, rather than genetic, sex. This potentially allows Y chromosomes to recombine, lending support for the recent hypothesis suggesting that sex-reversal may play an important role on the rejuvenation of Y chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypokinesia, rigidity, tremor, and postural instability are the cardinal symptoms of Parkinson s disease (PD). Since these symptoms are not specific to PD the diagnosis may be uncertain in early PD. Etiology and pathogenesis of PD remain unclear. There is no neuroprotective therapy. Genetic findings are expected to reveal metabolic routes in PD pathogenesis and thereby eventually lead to therapeutic innovations. In this thesis, we first aimed to study the usefulness and accuracy of 123I-b-CIT SPECT in the diagnosis of PD in a consecutive clinic-based material including various movement disorders. We subsequently a genetic project to identify genetic risk factors for sporadic PD using a candidate gene approach in a case-control setting including 147 sporadic PD patients and 137 spouse controls. Dopamine transporter imaging by 123I-b-CIT SPECT could distinguish PD from essential tremor, drug-induced parkinsonism, dystonia and psychogenic parkinsonism. However, b-CIT uptake in Parkinson plus syndromes (PSP and multiple system atrophy) and dementia with Lewy bodies was not significantly different from PD. 123I-b-CIT SPECT could not reliably differentiate PD from vascular parkinsonism. 123I-b-CIT SPECT was 100% sensitive and specific in the diagnosis of PD in patients younger than 55 years but less specific in older patients, due to differential distribution of the above conditions in the younger and older age groups. 123I-b-CIT SPECT correlated with symptoms and detected bilateral nigrostriatal defect in patients whose PD was still in unilateral stage. Thus, in addition to as a differential diagnostic aid, 123I-b-CIT SPECT may be used to detect PD early, even pre-symptomatically in at-risk individuals. 123I-b-CIT SPECT was used to aid in the collection of patients to the genetic studies. In the genetic part of this thesis we found an association between PD and a polymorphic CAG-repeat in POLG1 gene encoding the catalytic subunit of mitochondrial polymerase gamma. The CAG-repeat encodes a polyglutamine tract (polyQ), the two most common lengths of which are 10Q (86-90%) and 11Q. In our Finnish material, the rarer non-10Q or non-11Q length variants (6Q-9Q, 12Q-14Q, 4R+9Q) were more frequent in patients than in spouse controls (10% vs. 3.5 %, p=0.003), or population controls (p=0.001). Therefore, we performed a replication study in 652 North American PD patients and 292 controls. Non-10/11Q alleles were more common in the US PD patients compared to the controls but the difference did not reach statistical significance (p=0.07). This larger data suggested our original definition of variant length allele might need reconsideration. Most previous studies on phenotypic effects of POLG1 polyQ have defined 10Q as the only normal allele. Non-10Q alleles were significantly more common in patients compared to the controls (17.3% vs. 12.3 %, p= 0.005). This association between non-10Q length variants and PD remained significant when compared to a larger set of 1541 literature controls (p=0.00005). In conclusion, POLG1 polyQ alleles other than 10Q may predispose to PD. We did not find association between PD and parkin or DJ-1, genes underlying autosomal recessive parkinsonism. The functional Val158Met polymorphism, which affects the catalytic effect of COMT enzyme, and another coding polymorphism in COMT were not associated with PD in our patient material. The APOE e2/3/4 polymorphism modifies risk for Alzheimer s disease and prognosis of for example brain trauma. APOE promoter and enhancer polymorphisms 219G/T and +113G/C, and APOE e3 haplotypes, have also been shown to modify the risk of Alzheimer s disease but not reported in PD. No association was found between PD and APOE e2/3/4 polymorphism, the promoter or enhancer polymorphisms, or the e3 haplotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most commonly occurring cancer among women, and its incidence is increasing worldwide. Positive family history is a well established risk factor for breast cancer, and it is suggested that the proportion of breast cancer that can be attributed to genetic factors may be as high as 30%. However, all the currently known breast cancer susceptibility genes are estimated to account for 20-30% of familial breast cancer, and only 5% of the total breast cancer incidence. It is thus likely that there are still other breast cancer susceptibility genes to be found. Cellular responses to DNA damage are crucial for maintaining genomic integrity and preventing the development of cancer. The genes operating in DNA damage response signaling network are thus good candidates for breast cancer susceptibility genes. The aim of this study was to evaluate the role of three DNA damage response associated genes, ATM, RAD50, and p53, in breast cancer. ATM, a gene causative for ataxia telangiectasia (A-T), has long been a strong candidate for a breast cancer susceptibility gene because of its function as a key DNA damage signal transducer. We analyzed the prevalence of known Finnish A-T related ATM mutations in large series of familial and unselected breast cancer cases from different geographical regions in Finland. Of the seven A-T related mutations, two were observed in the studied familial breast cancer patients. Additionally, a third mutation previously associated with breast cancer susceptibility was also detected. These founder mutations may be responsible for excess familial breast cancer regionally in Northern and Central Finland, but in Southern Finland our results suggest only a minor effect, if any, of any ATM genetic variants on familial breast cancer. We also screened the entire coding region of the ATM gene in 47 familial breast cancer patients from Southern Finland, and evaluated the identified variants in additional cases and controls. All the identified variants were too rare to significantly contribute to breast cancer susceptibility. However, the role of ATM in cancer development and progression was supported by the results of the immunohistochemical studies of ATM expression, as reduced ATM expression in breast carcinomas was found to correlate with tumor differentiation and hormone receptor status. Aberrant ATM expression was also a feature shared by the BRCA1/2 and the difficult-to-treat ER/PR/ERBB2-triple-negative breast carcinomas. From the clinical point of view, identification of phenotypic and genetic similarities between the BRCA1/2 and the triple-negative breast tumors could have an implication in designing novel targeted therapies to which both of these classes of breast cancer might be exceptionally sensitive. Mutations of another plausible breast cancer susceptibility gene, RAD50, were found to be very rare, and RAD50 can only be making a minor contribution to familial breast cancer predisposition in UK and Southern Finland. The Finnish founder mutation RAD50 687delT seems to be a null allele and may carry a small increased risk of breast cancer. RAD50 is not acting as a classical tumor suppressor gene, but it is possible that RAD50 haploinsufficiency is contributing to cancer. In addition to relatively rare breast cancer susceptibility alleles, common polymorphisms may also be associated with increased breast cancer risk. Furthermore, these polymorphisms may have an impact on the progression and outcome of the disease. Our results suggest no effect of the common p53 R72P polymorphism on familial breast cancer risk or breast cancer risk in the population, but R72P seems to be associated with histopathologic features of the tumors and survival of the patients; 72P homozygous genotype was an independent prognostic factor among the unselected breast cancer patients, with a two-fold increased risk of death. These results present important novel findings also with clinical significance, as codon 72 genotype could be a useful additional prognostic marker in breast cancer, especially among the subgroup of patients with wild-type p53 in their tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy in women in Western countries. It is a heterogeneous disease with varying biological characteristics and aggressiveness. Family history is one of the strongest predisposing factors for breast cancer. The known susceptibility genes explain only around 25% of all familial breast cancers. At least part of the unknown familial aggregation may be caused by several low-penetrance variants that occur commonly in the general population. Cyclins are cell cycle-regulating proteins. Cyclin expression oscillates during the cell cycle and is under strict control. In cancer cells, cyclin expression often becomes deregulated, leading to uncontrolled cell division and proliferation, one of the hallmarks of cancer. In this study, we investigated the role of cyclins in breast cancer predisposition, pathogenesis, and tumor behavior. Cyclin A immunohistochemistry was evaluated both on traditional large sections and on tissue microarrays (TMA). The concordance of the results was good, indicating that TMA is a reliable method for studying cyclin expression in breast cancer. The expression of cyclins D1, E, and B1 was studied among 1348 invasive breast cancers on TMA. Familial BRCA1/2-mutation negative tumors had significantly more often low cyclin E and high cyclin D1 expression than BRCA1/2 related or sporadic tumors. Unique cyclin E and D1 expression patterns among familial non-BRCA1/2 breast cancers may reflect different predisposition and pathogenesis in these groups and help to differentiate mutation-positive from mutation-negative familial cancers. High cyclin E expression was associated with an aggressive breast cancer phenotype and was an independent marker of poor metastasis-free survival. High cyclin D1 was associated with high grade and high proliferation among estrogen receptor (ER)-positive but with low grade and low proliferation among ER-negative breast cancers. Among ER-positive cancers not treated with chemotherapy, high cyclin D1 showed a trend towards shorter metastasis-free survival. These results suggest that different mechanisms may drive proliferation in ER-negative and -positive breast cancers and that cyclin D1 has a particularly important role in tumorigenesis of hormone receptor-positive breast cancer. High cyclin B1 expression was associated with aggressive breast cancer features and had an independent impact on survival. The results suggest that cyclin B1 immunohistochemistry is a method that could easily be adapted for routine use and is an independent prognostic factor, adding specificity to prognostic evaluation conducted with traditional markers. A commonly occurring cyclin D1 gene polymorphism A870G was associated with increased breast cancer risk in a large material of Finnish and Canadian breast cancer patients. The interaction of the high-activity alleles of cyclin D1 gene and estrogen metabolism gene COMT conferred an even higher risk. These results show that cyclin D1 and COMT act synergistically to contribute to breast cancer progression and that individual risk for breast cancer can be altered by the combined effect of polymorphisms with low-penetrance alleles. By investigating critical cell cycle regulator protein cyclins, we revealed new aspects of breast cancer predisposition, pathogenesis, and clinical course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crohn s disease (CD) and ulcerative colitis (UC), collectively known as inflammatory bowel disease (IBD), are characterised by chronic inflammation of the gastrointestinal tract. IBD prevalence in Finland is approximately 3-4 per 1000 inhabitants with a peak incidence in adolescence. The symptoms of IBD include diarrhoea, abdominal pain, fever, and weight loss. The precise aetiology of IBD is unknown but interplay of environmental risk factors and immunologic changes trigger the disease in a genetically susceptible individual. Twin and family studies have provided strong evidence for genetic factors in IBD susceptibility, and genetic factors may be more prominent in CD than UC. The first CD susceptibility gene was identified in 2001. Three common mutations R702W, G908R, and 1007fs of the CARD15/NOD2 gene are shown to associate independently with CD but the magnitude of association varies between different populations. The present study aimed at identifying mutations and genetic variations in IBD susceptibility and candidate genes. In addition, correlation to phenotype was also assessed. One of the main objectives of this study was to evaluate the role of CARD15 in a Finnish CD cohort. 271 CD patients were studied for the three common mutations and the results showed a lower mutation frequency than in other Caucasian populations. Only 16% of the patients carried one of the three mutations. Ileal location as well as stricturing and penetrating behaviour of the disease were associated with occurrence of the mutations. The whole protein coding region of CARD15 was screened for possible Finnish founder mutations. In addition to several sequence variants, five novel mutations (R38M, W355X, P727L, W907R, and R1019X) were identified in five patients. Functional consequences of these novel variants were studied in vitro, and these studies demonstrated a profound impairment of MDP response. Investigation of CARD15 mutation frequency in healthy people across three continents showed a large geographic fluctuation. No simple correlation between mutation frequency and disease incidence was seen in populations studied. The occurrence of double mutant carriers in healthy controls suggested that the penetrance of risk alleles is low. Other main objectives aimed at identifying other genetic variations that are involved in the susceptibility to IBD. We investigated the most plausible IBD candidate genes including TRAF6, SLC22A4, SLC22A5, DLG5, TLR4, TNFRSF1A, ABCB1/MDR1, IL23R, and ATG16L1. The marker for a chromosome 5 risk haplotype and the rare HLA-DRB1*0103 allele were also studied. The study cohort consisted of 699 IBD patients (240 CD and 459 UC), of which 23% had a first-degree relative with IBD. Of the several candidate genes studied, IL23R was associated with CD susceptibility, and TNFRSF1A as well as the HLA-DRB1*0103 allele with UC susceptibility. IL23R variants also showed association with the stricturing phenotype and longer disease duration in CD patients. In addition, TNFRSF1A variants were more common among familial UC and ileocolonic CD. In conclusion, the common CARD15 mutations were shown to account for 16% of CD cases in Finland. Novel CARD15 variants identified in the present study are most likely disease-causing mutations, as judged by the results of in vitro studies. The present study also confirms the IL23R association with CD susceptibility and, in addition, TNFRSF1A and HLA-DRB1*0103 allele association with UC of specific clinical phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD; OMIM # 603075) is an eye disease of the elderly, signs of which appear after the age of 50. In the Western world it is a leading cause of permanent visual loss with a prevalence of 8.5% in persons under 54 years of age and of 37% in persons over 75 years of age. Early forms of AMD may be asymptomatic, but in the late forms usually a central scotoma in the visual field follows severely complicating daily tasks. Smoking, age, and genetic predisposition are known risk factors for AMD. Until recently no true susceptibility genes had been identified though the composition of drusen deposits, the hallmarks of AMD, has suggested that the complement system might play a role in the pathogenesis of AMD. When four groups reported in March 2005, that, on chromosome 1q32, a Y402H variant in the complement factor H (CFH) gene confers risk for AMD in independent Caucasian samples, a new period in the field of genetic research of AMD started. CFH is a key regulator of the complement system. Thus, it is logical to speculate, that it plays a role in the pathogenesis of AMD. We performed a case-control association study to analyse whether the CFH Y402H variant contain a risk for AMD in the Finnish population. Although the population of Finland represents a genetic isolate, the CFH Y402H polymorphism was associated with AMD also in our patient sample with similar risk allele frequencies as in the other Caucasian populations. We further evaluated the effects of this variant, but no association between lesion subtype (predominantly classic, minimally classic or occult lesion) or lesion size of neovascular AMD and the CFH Y402H variant was detected. Neither did the variant have an effect on the photodynamic therapy (PDT) outcome. The patients that respond to PDT carried the risk genotype as frequently as those who did not respond, and no difference was found in the number of PDT sessions needed in patients with or without the risk genotypes of CFH Y402H. Functional analyses, however, showed that the binding of C-reactive protein (CRP) to CFH was significantly reduced in patients with the risk genotype of Y402H. In the past two years, the LOC387715/ high-temperature requirement factor A1 (HTRA1) locus on 10q26 has also been repeatedly associated with AMD in several populations. The recent discovery of the LOC387715 protein on the mitochondrial outer membrane suggests that the LOC387715 gene, not HTRA1, is the true predisposing gene in this region, although its biological function is still unknown. In our Finnish patient material, patients with AMD carried the A69S risk genotype of LOC387715 more frequently than the controls. Also, for the first time, an interaction between the CFH Y402H and the LOC387715 A69S variants was found. The most recently detected susceptibilty gene of AMD, the complement component 3 (C3) gene, encodes the central component of the complement system, C3. In our Finnish sample, an additive gene effect for the C3 locus was detected, though weaker than the effects for the two main loci, CFH and LOC387715. Instead, the hemicentin-1 or the elongation of very long chain fatty acids-like 4 genes that have also been suggested as candidate genes for AMD did not carry a risk for AMD in the Finnish population. This was the first series of molecular genetic study of AMD in Finland. We showed that two common risk variants, CFH Y402H and LOC387715 A69S, represent a high risk of AMD also in the isolated Finnish population, and furthermore, that they had a statistical interaction. It was demonstrated that the CFH Y402H risk genotype affects the binding of CFH to CRP thus suggesting that complement indeed plays an important role in the pathogenesis of AMD.