64 resultados para CDNA MICROARRAY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there are nine known human herpesviruses and these viruses appear to have been a very common companion of humans throughout the millenia. Of human herpesviruses, herpes simplex viruses 1 and 2 (HSV-1, HSV-2), causative agents of herpes labialis and genital herpes, and varicella-zoster virus (VZV), causative agent of chicken pox, are also common causes of central nervous system (CNS) infections. In addition, human cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), all members of the herpesvirus family, can also be associated with encephalitis and meningitis. Accurate diagnostics and fast treatment are essential for patient recovery in CNS infections and therefore sensitive and effective diagnostic methods are needed. The aim of this thesis was to develop new potential detection methods for diagnosing of human herpesvirus infections, especially in immunocompetent patients, using the microarray technique. Therefore, methods based on microarrays were developed for simultaneous detection of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6A, HHV-6B, and HHV-7 nucleic acids, and for HSV-1, HSV-2, VZV, and CMV antibodies from various clinical samples. The microarray methods developed showed potential for efficiently and accurately detecting human herpesvirus DNAs, especially in CNS infections, and for simultaneous detection of DNAs or antibodies for multiple different human herpesviruses from clinical samples. In fact, the microarray method revealed several previously unrecognized co-infections. The microarray methods developed were sensitive and provided rapid detection of human herpesvirus DNA, and therefore the method could be applied to routine diagnostics. The microarrays might also be considered as an economical tool for diagnosing human herpesvirus infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of non-coding sequences, introns, is an essential part of messenger RNA processing. In most metazoan organisms, the U12-type spliceosome processes a subset of introns containing highly conserved recognition sequences. U12-type introns constitute less than 0,5% of all introns and reside preferentially in genes related to information processing functions, as opposed to genes encoding for metabolic enzymes. It has previously been shown that the excision of U12-type introns is inefficient compared to that of U2-type introns, supporting the model that these introns could provide a rate-limiting control for gene expression. The low efficiency of U12-type splicing is believed to have important consequences to gene expression by limiting the production of mature mRNAs from genes containing U12-type introns. The inefficiency of U12-type splicing has been attributed to the low abundance of the components of the U12-type spliceosome in cells, but this hypothesis has not been proven. The aim of the first part of this work was to study the effect of the abundance of the spliceosomal snRNA components on splicing. Cells with a low abundance of the U12-type spliceosome were found to inefficiently process U12-type introns encoded by a transfected construct, but the expression levels of endogenous genes were not found to be affected by the abundance of the U12-type spliceosome. However, significant levels of endogenous unspliced U12-type intron-containing pre-mRNAs were detected in cells. Together these results support the idea that U12-type splicing may limit gene expression in some situations. The inefficiency of U12-type splicing has also promoted the idea that the U12-type spliceosome may control gene expression, limiting the mRNA levels of some U12-type intron-containing genes. While the identities of the primary target genes that contain U12-type introns are relatively well known, little has previously been known about the downstream genes and pathways potentially affected by the efficiency of U12-type intron processing. Here, the effects of U12-type splicing efficiency on a whole organism were studied in a Drosophila line with a mutation in an essential U12-type spliceosome component. Genes containing U12-type introns showed variable gene-specific responses to the splicing defect, which points to variation in the susceptibility of different genes to changes in splicing efficiency. Surprisingly, microarray screening revealed that metabolic genes were enriched among downstream effects, and that the phenotype could largely be attributed to one U12-type intron-containing mitochondrial gene. Gene expression control by the U12-type spliceosome could thus have widespread effects on metabolic functions in the organism. The subcellular localization of the U12-type spliceosome components was studied as a response to a recent dispute on the localization of the U12-type spliceosome. All components studied were found to be nuclear indicating that the processing of U12-type introns occurs within the nucleus, thus clarifying a question central to the field. The results suggest that the U12-type spliceosome can limit the expression of genes that contain U12-type introns in a gene-specific manner. Through its limiting role in pre-mRNA processing, the U12-type splicing activity can affect specific genetic pathways, which in the case of Drosophila are involved in metabolic functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time of the large sequencing projects has enabled unprecedented possibilities of investigating more complex aspects of living organisms. Among the high-throughput technologies based on the genomic sequences, the DNA microarrays are widely used for many purposes, including the measurement of the relative quantity of the messenger RNAs. However, the reliability of microarrays has been strongly doubted as robust analysis of the complex microarray output data has been developed only after the technology had already been spread in the community. An objective of this study consisted of increasing the performance of microarrays, and was measured by the successful validation of the results by independent techniques. To this end, emphasis has been given to the possibility of selecting candidate genes with remarkable biological significance within specific experimental design. Along with literature evidence, the re-annotation of the probes and model-based normalization algorithms were found to be beneficial when analyzing Affymetrix GeneChip data. Typically, the analysis of microarrays aims at selecting genes whose expression is significantly different in different conditions followed by grouping them in functional categories, enabling a biological interpretation of the results. Another approach investigates the global differences in the expression of functionally related groups of genes. Here, this technique has been effective in discovering patterns related to temporal changes during infection of human cells. Another aspect explored in this thesis is related to the possibility of combining independent gene expression data for creating a catalog of genes that are selectively expressed in healthy human tissues. Not all the genes present in human cells are active; some involved in basic activities (named housekeeping genes) are expressed ubiquitously. Other genes (named tissue-selective genes) provide more specific functions and they are expressed preferably in certain cell types or tissues. Defining the tissue-selective genes is also important as these genes can cause disease with phenotype in the tissues where they are expressed. The hypothesis that gene expression could be used as a measure of the relatedness of the tissues has been also proved. Microarray experiments provide long lists of candidate genes that are often difficult to interpret and prioritize. Extending the power of microarray results is possible by inferring the relationships of genes under certain conditions. Gene transcription is constantly regulated by the coordinated binding of proteins, named transcription factors, to specific portions of the its promoter sequence. In this study, the analysis of promoters from groups of candidate genes has been utilized for predicting gene networks and highlighting modules of transcription factors playing a central role in the regulation of their transcription. Specific modules have been found regulating the expression of genes selectively expressed in the hippocampus, an area of the brain having a central role in the Major Depression Disorder. Similarly, gene networks derived from microarray results have elucidated aspects of the development of the mesencephalon, another region of the brain involved in Parkinson Disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keuhkosyöpä on yleisimpiä syöpätauteja. Se jaetaan kahteen päätyyppiin: pienisoluiseen ja ei-pienisoluiseen keuhkosyöpään. Ei-pienisoluinen keuhkosyöpä jaetaan lisäksi alatyyppeihin, joista suurimmat ovat levyepiteeli-, adeno- ja suurisoluinen karsinooma. Keuhkosyövän tärkein riskitekijä on tupakointi, mutta muutkin työ- ja elinympäristön altisteet, kuten asbesti, voivat johtaa syöpään. Väitöstyössä tutkittiin kahdenlaisten keuhkosyöpäryhmien erityispiirteitä. Työssä kartoitettiin, onko löydettävissä muutoksia, jotka erottavat asbestikeuhkosyövät muista syövistä sekä luuytimeen varhaisessa vaiheessa leviävät keuhkosyövät leviämättömistä syövistä. Tutkimusten ensimmäisessä vaiheessa käytettiin mikrosirupohjaisia menetelmiä, jotka mahdollistavat jopa kaikkien geenien tarkastelun yhden kokeen avulla. Vertailevien mikrosirututkimusten avulla on mahdollista paikantaa geenejä tai kromosomialueita, joiden muutokset erottelevat ryhmät toisistaan. Asbestiin liittyvissä tutkimuksissa paikannettiin kuusi kromosomialuetta, joissa geenien kopiolukumäärän sekä ilmenemistason muutokset erottelivat potilaat altistushistorian mukaan. Riippumattomilla laboratoriomenetelmillä tehtyjen jatkoanalyysien avulla pystyttiin varmistamaan, että 19p-alueen häviämä oli yhteydessä asbestialtistukseen. Työssä osoitettiin myös, että 19p-alueen muutoksia voidaan indusoida altistamalla soluja asbestille in vitro. Tutkimuksessa saatiin lisäksi viitteitä asbestispesifisistä muutoksista signaalinvälitysreiteissä, sillä yhdessä toimivien geenien ilmentymisessä havaittiin eroja asbestille altistuneiden ja altistumattomien välillä. Vertailemalla luuytimeen syövän aikaisessa vaiheessa levinneiden ja leviämättömien keuhkoadenokarsinoomien muutosprofiileita toisiinsa, paikannettiin viisi aluetta, joilla geenien kopiolukumäärä- sekä ilmenemistason muutokset erottelivat ryhmät toisistaan. Jatkoanalyyseissä havaittiin, että 4q-alueen häviämää esiintyi adenokarsinoomien lisäksi levyepiteelikarsinoomiin, jotka olivat levinneet luuytimeen. Myös keuhkosyöpien aivometastaaseissa alue oli toistuvasti hävinnyt. Väitöstyön tutkimukset osoittavat, että vertailevien mikrosiruanalyysien avulla saadaan tietoa syöpäryhmien erityispiirteistä. Työssä saadut tulokset osoittavat, että 19p-alueen muutokset ovat tyypillisiä asbestikeuhkosyöville ja 4q-alueen muutokset luuytimeen aikaisessa vaiheessa leviäville keuhkosyöville.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuroectodermal tissue close to the midbrain hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) regulates cellular survival, patterning and proliferation in the midbrain (Mb) and rhombomere 1 (R1) of the hindbrain. Signaling molecules of the IsO, such as fibroblast growth factor 8 (FGF8) and WNT1 are expressed in distinct bands of cells around the MHB. It has been previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. In the present study, we have compared the gene expression profiles of wild-type and Fgfr1 mutant embryos. We show that the loss of Fgfr1 results in the downregulation of several genes expressed close to the MHB and in the disappearance of gene expression gradients in the midbrain and R1. Our microarray screen identified several previously uncharacterized genes which may participate in the development of midbrain R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. As Wnt1 expression at the MHB region requires the FGF signaling pathway, WNT target genes, including Drapc1, were also identified in our screen. The microarray data analysis also suggested that the cells next to the midbrain hindbrain boundary express distinct cell cycle regulators. We showed that the cells close to the border appeared to have unique features. These cells proliferate less rapidly than the surrounding cells. Unlike the cells further away from the boundary, these cells express Fgfr1 but not the other FGF receptors. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All organisms have evolved mechanisms to acquire thermotolerance. A moderately high temperature activates heat shock genes and triggers thermotolerance towards otherwise lethal high temperature. The focus of this work is the recovery mechanisms ensuring survival of Saccharomyces cerevisiae yeast cells after thermal insult. Yeast cells, first preconditioned at 37˚C, can survive a short thermal insult at 48-50˚C and are able to refold heat-denatured proteins when allowed to recover at physiological temperature 24˚C. The cytoplasmic chaperone Hsp104 is required for the acquisition of thermotolerance and dissolving protein aggregates in the cytosol with the assistance of disaccharide trehalose. In the present study, Hsp104 and trehalose were shown to be required for conformational repair of heat-denatured secretory proteins in the endoplasmic reticulum. A reporter protein was first accumulated in the lumen of endoplasmic reticulum and heat-denatured by thermal insult, and then failed to be repaired to enzymatically active and secretion-competent conformation in the absence of Hsp104 or trehalose. The efficient transport of a glycoprotein CPY, accumulated in the endoplasmic reticulum, to the vacuole after thermal insult also needed the presence of Hsp104 and trehalose. However, proteins synthesized after thermal insult at physiological temperature were secreted with similar kinetics both in the absence and in the presence of Hsp104 or trehalose, demonstrating that the secretion machinery itself was functional. As both Hsp104 and trehalose are cytosolic, a cross-talk between cytosolic and luminal chaperone machineries across the endoplasmic reticulum membrane appears to take place. Global expression profiles, obtained with the DNA microarray technique, revealed that the gene expression was shut down during thermal insult and the majority of transcripts were destroyed. However, the transcripts of small cytosolic chaperones Hsp12 and Hsp26 survived. The first genes induced during recovery were related to refolding of denatured proteins and resumption of de novo protein synthesis. Transcription factors Spt3p and Med3p appeared to be essential for acquisition of full thermotolerance. The transcription factor Hac1p was found to be subject to delayed up-regulation at mRNA level and this up-regulation was diminished or delayed in the absence of Spt3p or Med3p. Consequently, production of the chaperone BiP/Kar2p, a target gene of Hac1p, was diminished and delayed in Δspt3 and Δmed3 deletion strains. The refolding of heat-denatured secretory protein CPY to a transport-competent conformation was retarded, and a heat-denatured reporter enzyme failed to be effectively reactivated in the cytoplasm of the deletion strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.