121 resultados para Bibliometric studies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, two separate single nucleotide polymorphism (SNP) genotyping techniques were set up at the Finnish Genome Center, pooled genotyping was evaluated as a screening method for large-scale association studies, and finally, the former approaches were used to identify genetic factors predisposing to two distinct complex diseases by utilizing large epidemiological cohorts and also taking environmental factors into account. The first genotyping platform was based on traditional but improved restriction-fragment-length-polymorphism (RFLP) utilizing 384-microtiter well plates, multiplexing, small reaction volumes (5 µl), and automated genotype calling. We participated in the development of the second genotyping method, based on single nucleotide primer extension (SNuPeTM by Amersham Biosciences), by carrying out the alpha- and beta tests for the chemistry and the allele-calling software. Both techniques proved to be accurate, reliable, and suitable for projects with thousands of samples and tens of markers. Pooled genotyping (genotyping of pooled instead of individual DNA samples) was evaluated with Sequenom s MassArray MALDI-TOF, in addition to SNuPeTM and PCR-RFLP techniques. We used MassArray mainly as a point of comparison, because it is known to be well suited for pooled genotyping. All three methods were shown to be accurate, the standard deviations between measurements being 0.017 for the MassArray, 0.022 for the PCR-RFLP, and 0.026 for the SNuPeTM. The largest source of error in the process of pooled genotyping was shown to be the volumetric error, i.e., the preparation of pools. We also demonstrated that it would have been possible to narrow down the genetic locus underlying congenital chloride diarrhea (CLD), an autosomal recessive disorder, by using the pooling technique instead of genotyping individual samples. Although the approach seems to be well suited for traditional case-control studies, it is difficult to apply if any kind of stratification based on environmental factors is needed. Therefore we chose to continue with individual genotyping in the following association studies. Samples in the two separate large epidemiological cohorts were genotyped with the PCR-RFLP and SNuPeTM techniques. The first of these association studies concerned various pregnancy complications among 100,000 consecutive pregnancies in Finland, of which we genotyped 2292 patients and controls, in addition to a population sample of 644 blood donors, with 7 polymorphisms in the potentially thrombotic genes. In this thesis, the analysis of a sub-study of pregnancy-related venous thromboses was included. We showed that the impact of factor V Leiden polymorphism on pregnancy-related venous thrombosis, but not the other tested polymorphisms, was fairly large (odds ratio 11.6; 95% CI 3.6-33.6), and increased multiplicatively when combined with other risk factors such as obesity or advanced age. Owing to our study design, we were also able to estimate the risks at the population level. The second epidemiological cohort was the Helsinki Birth Cohort of men and women who were born during 1924-1933 in Helsinki. The aim was to identify genetic factors that might modify the well known link between small birth size and adult metabolic diseases, such as type 2 diabetes and impaired glucose tolerance. Among ~500 individuals with detailed birth measurements and current metabolic profile, we found that an insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene was associated with the duration of gestation, and weight and length at birth. Interestingly, the ACE insertion allele was also associated with higher indices of insulin secretion (p=0.0004) in adult life, but only among individuals who were born small (those among the lowest third of birth weight). Likewise, low birth weight was associated with higher indices of insulin secretion (p=0.003), but only among carriers of the ACE insertion allele. The association with birth measurements was also found with a common haplotype of the glucocorticoid receptor (GR) gene. Furthermore, the association between short length at birth and adult impaired glucose tolerance was confined to carriers of this haplotype (p=0.007). These associations exemplify the interaction between environmental factors and genotype, which, possibly due to altered gene expression, predisposes to complex metabolic diseases. Indeed, we showed that the common GR gene haplotype associated with reduced mRNA expression in thymus of three individuals (p=0.0002).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical cellular decisions such as should the cell proliferate, migrate or differentiate, are regulated by stimulatory signals from the extracellular environment, like growth factors. These signals are transformed to cellular responses through their binding to specific receptors present at the surface of the recipient cell. The epidermal growth factor receptor (EGF-R/ErbB) pathway plays key roles in governing these signals to intracellular events and cell-to-cell communication. The EGF-R forms a signaling network that participates in the specification of cell fate and coordinates cell proliferation. Ligand binding triggers receptor dimerization leading to the recruitment of kinases and adaptor proteins. This step simultaneously initiates multiple signal transduction pathways, which result in activation of transcription factors and other target proteins, leading to cellular alterations. It is known that mutations of EGF-R or in the components of these pathways, such as Ras and Raf, are commonly involved in human cancer. The four best characterized signaling pathways induced by EGF-R are the mitogen-activated protein kinase cascades (MAPKs), the lipid kinase phosphatidylinositol 3 kinase (PI3K), a group of transcription factors called Signal Transducers and Activator of Transcription (STAT), and the phospholipase Cγ; (PLCγ) pathways. The activation of each cascade culminates in kinase translocation to the nucleus to stimulate various transcription factors including activator protein 1 (AP-1). AP-1 family proteins are basic leucine zipper (bZIP) transcription factors that are implicated in the regulation of a variety of cellular processes (proliferation and survival, growth, differentiation, apoptosis, cell migration, transformation). Therefore, the regulation of AP-1 activity is critical for the decision of cell fate and their deregulated expression is widely associated with many types of cancers, such as breast and prostate cancers. The aims of this study were to characterize the roles of EGF-R signaling during normal development and malignant growth in vitro and in vivo using different cell lines and tissue samples. We show here that EGF-R regulates cell proliferation but is also required for regulation of AP-1 target gene expression in fibroblasts in a MAP-kinase mediated manner. Furthermore, EGF-R signaling is essential for enterocyte proliferation and migration during intestinal maturation. EGF-R signaling network, especially PI3-K-Akt pathway mediated AP-1 activity is involved in cellular survival in response to ionizing radiation. Taken together, these results elucidate the connection of EGF-R and AP-1 in various cellular contexts and show their importance in the regulation of cellular behaviour presenting new treatment cues for intestinal perforations and cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent miscarriage (RM) is defined as three consecutive pregnancy failures and is estimated to affect ~1% of couples trying to conceive. The cause of RM remains unknown in approximately 50% of cases. In this study, it was hypothesized that some of the underlying factors yet to be discovered are genetic. The aim was to search for mutations in genes AMN, EPCR, TM, and p53 known to cause miscarriage in mouse models and thereby find new genetic causes for unexplained miscarriages in humans. In addition, the mitochondrial genome was studied because mitochondria are involved in processes important in early development. Furthermore, sex chromosome characteristics suggested to underlie miscarriage were also studied. A total of 40 couples and 8 women with unexplained RM were collected for this study and screened for mutations in the candidate genes. Six interesting exonic or potential splice site disrupting variations were detected. However, their phenotypic effects cannot be determined without further investigations. Additionally, an association between the C11992A polymorphism of the p53 gene and RM was detected. The results indicate that women carrying the C/A or A/A genotype have a two-fold higher risk for RM than women with a C/C genotype. This strengthens the results of previous studies reporting that p53 sequence variations may cause miscarriage. The role of variation C11992A in embryonic development is, however, difficult to predict without further studies When screening the mitochondrial genome a heteroplasmic mtDNA variation was found in an unexpected high number of women, as heteroplasmic variations are reported to be rare. One novel variation and 18 previously reported polymorphisms were detected in the mitochondrial genome. Although the detected variations are likely to be neutral polymorphisms, a role in the aetiology of miscarriage cannot be excluded as some mtDNA variations may be pathogenic only when a threshold is reached. Recent publications have reported skewed X chromosome inactivation and Y chromosome microdeletions to be associated with RM. Therefore, these sex chromosome abnormalities in the context of RM were investigated. No associations between skewed X chromosome inactivation or Y chromosome microdeletions and RM in the Finnish patients were detected. Data on ancestral birthplaces of the patients were collected to study any possible geographic clustering, which would indicate a common predisposing factor. The results showed clustering of the birthplaces in eastern Finland in a subset of patients. This suggests a possibility of an enriched susceptibility gene which may contribute to RM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis, progressive joint destruction, and disability. Reactive arthritis (ReA) is a sterile joint inflammation following a distant mucosal infection. The clinical course of these diseases is variable and cannot be predicted with reasonable accuracy by clinical and laboratory markers. The predictive value of circulating soluble interleukin-2 receptor (sIL-2R), a marker of lymphocyte activation, measured by Immulite® automated immunoassay analyzer, was evaluated in two cohorts of RA patients. In 175 patients with active early RA randomized to treatment with either on disease-modifying antirheumatic drug (DMARD) or a combination of 3 DMARDs and prednisolone, low baseline sIL-2R level predicted remission after 6 months in patients treated with a single DMARD. In 24 patients with active RA refractory to DMARDs, low baseline sIL-2R level predicted rapid clinical response to treatment with infliximab, an anti-tumour necrosis factor antibody. Furthermore, in a cohort of 26 patients with acute ReA, high baseline sIL-2R level predicted remission after 6 months. Levels of circulating soluble E-selectin (sE-selectin), a marker of endothelial activation, were measured annually by enzyme-linked immunosorbent assay (ELISA) in a cohort of 85 patients with early RA. During a five-year follow-up, sE-selectin levels were associated with activity and outcome of RA. The levels of neutrophil and monocyte CD11b/CD18 expression measured by flow cytometry, and circulating levels of sE-selectin measured by ELISA, and procalcitonin by immunoluminometric assay, were compared in 28 patients with acute ReA and 16 patients with early RA. The levels of the markers were comparable in ReA, RA, and healthy control subjects. In conlusion, sIL-2R may provide a new predictive marker in early RA treated with a single DMARD and refractory RA treated with infliximab. In addition, sIL-2R level predicts remission in acute ReA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.