23 resultados para curriculum materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the information and material activities that comprise the overall construction process is presented, using the SADT activity modelling methodology. The basic model is further refined into a number of generic information handling activities such as creation of new information, information search and retrieval, information distribution and person-to-person communication. The viewpoint could be described as information logistics. This model is then combined with a more traditional building process model, consisting of phases such as design and construction. The resulting two-dimensional matrix can be used for positioning different types of generic IT-tools or construction specific applications. The model can thus provide a starting point for a discussion of the application of information and communication technology in construction and for measurements of the impacts of IT on the overall process and its related costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Rights Education in a Finnish Upper Secondary School: Alien Yet Obvious This study focused on conceptions of human rights and human rights education (HRE) among students and teachers. I examined how human rights and HRE are understood by the students and teachers in one general upper secondary school located in southern Finland. I also examined teacher and student discourses about foreigners and immigrants. In the theoretical part of the study I dealt with the history of human rights, the different emphases in HRE and how HRE is handled within the curriculum of upper secondary schools in Finland. In the empirical part of the study I examined HRE in one particular general upper secondary school located in southern Finland where I carried out 28 student interviews and 18 teacher interviews. The study is based on qualitative theme interviews, which I analysed using qualitative content analysis. The aims of HRE as specified in UN documents on education seem not to have been achieved in the Finnish context. The students' knowledge of human rights seemed weak and very limited. Few teachers were familiar with the concept of human rights education. The concept of human rights was also unclear to many of the students. Freedom of speech was the most well-known and the most often-cited human right mentioned in the interviews. Students were not well acquainted with the different human rights instruments or the organisations dealing with human rights. In a way, human rights were both familiar and strange to the students. Materials related to HRE were used very little in the school or not at all. Yet human rights seemed to be very well implemented in the institution. The upper secondary school studied here does not seem to have substantial problems with equality among either the teachers or the students. In the interviews human rights problems were often considered someone else's problem in some other country. The teachers and students connected HRE especially with religious education, history and social studies. Human dignity is mostly dealt with in religious education, while matters concerning the history of human rights are mostly dealt with in history classes. Teachers appear to be human rights educators in the sense that they try to follow human rights principles in their daily work and respect the human dignity of everyone. The special role of a human rights educator was usually assigned to someone else — a teacher or an expert outside the school. HRE was not an intentional or conscious part of teachers´ educational work and was not seen either as belonging to the curriculum or as an obligation prescribed by international documents. There is a need to strengthen the presence of HRE in teacher education. HRE plays an important role in creating a culture of human rights. It is important to implement HRE so that the international aims for HRE will be fulfilled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray synchrotron radiation was used to study the nanostructure of cellulose in Norway spruce stem wood and powders of cobalt nanoparticles in cellulose support. Furthermore, the growth of metallic clusters was modelled and simulated in the mesoscopic size scale. Norway spruce was characterized with x-ray microanalysis at beamline ID18F of the European Synchrotron Radiation Facility in Grenoble. The average dimensions and the orientation of cellulose crystallites was determined using x-ray microdiffraction. In addition, the nutrient element content was determined using x-ray fluorescence spectroscopy. Diffraction patterns and fluorescence spectra were simultaneously acquired. Cobalt nanoparticles in cellulose support were characterized with x-ray absorption spectroscopy at beamline X1 of the Deutsches Elektronen-Synchrotron in Hamburg, complemented by home lab experiments including x-ray diffraction, electron microscopy and measurement of magnetic properties with a vibrating sample magnetometer. Extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray diffraction were used to solve the atomic arrangement of the cobalt nanoparticles. Scanning- and transmission electron microscopy were used to image the surfaces of the cellulose fibrils, where the growth of nanoparticles takes place. The EXAFS experiment was complemented by computational coordination number calculations on ideal spherical nanocrystals. The growth process of metallic nanoclusters on cellulose matrix is assumed to be rather complicated, affected not only by the properties of the clusters themselves, but essentially depending on the cluster-fiber interfaces as well as the morphology of the fiber surfaces. The final favored average size for nanoclusters, if such exists, is most probably a consequence of these two competing tendencies towards size selection, one governed by pore sizes, the other by the cluster properties. In this thesis, a mesoscopic model for the growth of metallic nanoclusters on porous cellulose fiber (or inorganic) surfaces is developed. The first step in modelling was to evaluate the special case of how the growth proceeds on flat or wedged surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Curriculum Guidelines on Early Childhood Education and Care (ECEC) in Finland says that ECEC is developed holistically through observing children´s and the educator community´s activities and the ECEC environment. The background of this research was that assesment should be based on commonly agreed principles, which are recorded e.g. to unit-specific ECEC curriculum. The objective of this research was to investigate how unit-specific ECEC curriculums have descriped the physical indoor environment in day-care centres. According to the National Curriculum Guidelines on ECEC, there are four ways of acting that are peculiar to children: playing, physical activities, exploration and artistic experiences and self-expression. The descriptions of physical environment in unit-spesific curriculums were observed through above mentioned four ways of acting. In addition to that, the descriptions of four ways of acting were compared to each other, in order to find out, which are the main differencies and similarities in relation to physical ECEC environment. Research material was build on unit-specific ECEC curriculums from 18 day-care centres of Helsinki. Target of the research were the descriptions of physical indoor environment in curriculums.The method used in the research was theory-guided content analysis. The analyses were mainly qualitative. The descriptions of psysical environment varied widely both quantitatively and by substance. All curriculums contained mentions of playing and artistic experiences and self-expression, but mentions of physical activities and exploration were noticiably fewer. All four ways of acting were mentioned in research material in relation to premises and instruments. Also, principles related to the use of premises and instruments and other more common priciples were mentioned in relation to all ways of acting. Instead of that, children were not mentioned even once as an upholders or innovators of physical activities environment and children were mentioned only once regarding to exploration environment. All ways of acting included scenarios of e.g. that environment must provide possibilities of particular way of acting, and both materials and instruments must be available for children. Anyhow, research material did not include any principle or scenario that relates to physical environment that would have occurred in every unit-specific curriculum.