47 resultados para binding free enthalpy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion and extracellular matrix (ECM) molecules play a significant role in neuronal plasticity both during development and in the adult. Plastic changes in which ECM components are implicated may underlie important nervous system functions, such as memory formation and learning. Heparin-binding growthassociated molecule (HB-GAM, also known as pleiotrophin), is an ECM protein involved in neurite outgrowth, axonal guidance and synaptogenesis during perinatal period. In the adult brain HB-GAM expression is restricted to the regions which display pronounced synaptic plasticity (e.g., hippocampal CA3-CA1 areas, cerebral cortex laminae II-IV, olfactory bulb). Expression of HB-GAM is regulated in an activity-dependent manner and is also induced in response to neuronal injury. In this work mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in hippocampal synaptic plasticity and in hippocampus-dependent behavioral tasks. Phenotypic analysis of HBGAM null mutants and mice overexpressing HB-GAM revealed that opposite genetic manipulations result in reverse changes in synaptic plasticity as well as behavior in the mutants. Electrophysiological recordings showed that mice lacking HB-GAM have an increased level of long-term potentiation (LTP) in the area CA1 of hippocampus and impaired spatial learning, whereas animals with enhanced level of HB-GAM expression have attenuated LTP, but outperformed their wild-type controls in spatial learning. It was also found that GABA(A) receptor-mediated synaptic transmission is altered in the transgenic mice overexpressing HB-GAM. The results suggest that these animals have accentuated hippocampal GABAergic inhibition, which may contribute to the altered glutamatergic synaptic plasticity. Structural studies of HB-GAM demonstrated that this protein belongs to the thrombospondin type I repeat (TSR) superfamily and contains two β-sheet domains connected by a flexible linker. It was found that didomain structure is necessary for biological activity of HB-GAM and electrophysiological phenotype displayed by the HB-GAM mutants. The individual domains displayed weaker binding to heparan sulfate and failed to promote neurite outgrowth as well as affect hippocampal LTP. Effects of HB-GAM on hippocampal synaptic plasticity are believed to be mediated by one of its (co-)receptor molecules, namely syndecan-3. In support of that, HB-GAM did not attenuate LTP in mice deficient in syndecan-3 as it did in wild-type controls. In addition, syndecan-3 knockout mice displayed electrophysiological and behavioral phenotype similar to that of HB-GAM knockouts (i.e. enhanced LTP and impaired learning in Morris water-maze). Thus HB-GAM and syndecan-3 are important modulators of synaptic plasticity in hippocampus and play a role in regulation of learning-related behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral cancer ranks among the 10 most common cancers worldwide. Since it is commonly diagnosed at locally advanced stage, curing the cancer demands extensive tissue resection. The emergent defect is reconstructed generally with a free flap transfer. Repair of the upper aerodigestive track with maintenance of its multiform activities is challenging. The aim of the study was to extract comprehensive treatment outcomes for patients having undergone microvascular free flap transfer because of large oral cavity or pharyngeal cancer. Ninety-four patients were analyzed for postoperative survival and complications. Forty-four patients were followed-up and analyzed for functional outcome, which was determined in terms of quality of life, speech, swallowing, and intraoral sensation. Quality of life was assessed using the University of Washington Head and Neck Questionnaire. Speech was analyzed for aerodynamic parameters and for nasal acoustic energy, as well as perceptually for articulatory proficiency, voice quality, and intelligibility. Videofluorography was performed to determine the swallowing ability. Intraoral sensation was measured by moving 2-point discrimination. The 3-year overall survival was over 40%. The 1-year disease-free survival was 43%. Postoperative complications arose in over half of the patients. Flap success rate was high. Perioperative mortality varied between 2% and 11%. Unemployment and heavy drinking were the strongest predictors of survival. Sociodemographic factors were found to associate with quality of life. The global quality of life score deteriorated and did not return to the preoperative level. Significant reduction was detectable in the domains measuring chewing and speech, and in appearance and shoulder function. The basic elements necessary for normal speech were maintained. Speech intelligibility reduced and was related to the misarticulations of the /r/ and /s/ phonemes. Deviant /r/ and /s/ persisted in most patients. Hoarseness and hypernasality occurred infrequently. One year postoperatively, 98% of the patients had achieved oral nutrition and half of them were on a regular masticated diet. Overt and silent aspiration was encountered throughout the follow-up. At 12-month swallow test, 44% of the patients aspirated, 70% of whom silently. Of these patients, 15% presented with pulmonary changes referring to aspiration. Intraoral sensation weakened but was unrelated to oral functions. The results provide new data for oral reconstructions and highlight the importance of the functional outcome of the treatment for an oral cancer patient. The mouth and the pharynx encompass a unit of utmost functional complexity. Surgery should continue to make progress in this area, and methods that lead to good function should be developed. Operational outcome should always be evaluated in terms of function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurotransmitter serotonin (5-HT) modulates many functions important for life, e.g., appetite and body temperature, and controls development of the neural system. Disturbed 5-HT function has been implicated in mood, anxiety and eating disorders. The serotonin transporter (SERT) controls the amount of effective 5-HT by removing it from the extracellular space. Radionuclide imaging methods single photon emission tomography (SPET) and positron emission tomography (PET) enable studies on the brain SERTs. This thesis concentrated on both methodological and clinical aspects of the brain SERT imaging using SPET. The first study compared the repeatability of automated and manual methods for definition of volumes of interest (VOIs) in SERT images. The second study investigated within-subject seasonal variation of SERT binding in healthy young adults in two brain regions, the midbrain and thalamus. The third study investigated the association of the midbrain and thalamic SERT binding with Bulimia Nervosa (BN) in female twins. The fourth study investigated the association of the midbrain and hypothalamic/thalamic SERT binding and body mass index (BMI) in monozygotic (MZ) twin pairs. Two radioligands for SERT imaging were used: [123I]ADAM (studies I-III) and [123I]nor-beta-CIT (study IV). Study subjects included young adult MZ and dizygotic (DZ) twins screened from the FinnTwin16 twin cohort (studies I-IV) and healthy young adult men recruited for study II. The first study validated the use of an automated brain template in the analyses of [123I]ADAM images and proved automated VOI definition more reproducible than manual VOI definition. The second study found no systematic within-subject variation in SERT binding between scans done in summer and winter in either of the investigated brain regions. The third study found similar SERT binding between BN women (including purging and non-purging probands), their unaffected female co-twins and other healthy women in both brain regions; in post hoc analyses, a subgroup of purging BN women had significantly higher SERT binding in the midbrain as compared to all healthy women. In the fourth study, MZ twin pairs were divided into twins with higher BMI and co-twins with lower BMI; twins with higher BMI were found to have higher SERT binding in the hypothalamus/thalamus than their leaner co-twins. Our results allow the following conclusions: 1) No systematic seasonal variation exists in the midbrain and thalamus between SERT binding in summer and winter. 2) In a population-based sample, BN does not associate with altered SERT status, but alterations are possible in purging BN women. 3) The higher SERT binding in MZ twins with higher BMIs as compared to their leaner co-twins suggests non-genetic association between acquired obesity and the brain 5-HT system, which may have implications on feeding behavior and satiety.