77 resultados para Molecular genetic
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common known clearly hereditary cause of colorectal and endometrial cancer (CRC and EC). Dominantly inherited mutations in one of the known mismatch repair (MMR) genes predispose to HNPCC. Defective MMR leads to an accumulation of mutations especially in repeat tracts, presenting microsatellite instability. HNPCC is clinically a very heterogeneous disease. The age at onset varies and the target tissue may vary. In addition, families that fulfill the diagnostic criteria for HNPCC but fail to show any predisposing mutation in MMR genes exist. Our aim was to evaluate the genetic background of familial CRC and EC. We performed comprehensive molecular and DNA copy number analyses of CRCs fulfilling the diagnostic criteria for HNPCC. We studied the role of five pathways (MMR, Wnt, p53, CIN, PI3K/AKT) and divided the tumors into two groups, one with MMR gene germline mutations and the other without. We observed that MMR proficient familial CRC consist of two molecularly distinct groups that differ from MMR deficient tumors. Group A shows paucity of common molecular and chromosomal alterations characteristic of colorectal carcinogenesis. Group B shows molecular features similar to classical microsatellite stable tumors with gross chromosomal alterations. Our finding of a unique tumor profile in group A suggests the involvement of novel predisposing genes and pathways in colorectal cancer cohorts not linked to MMR gene defects. We investigated the genetic background of familial ECs. Among 22 families with clustering of EC, two (9%) were due to MMR gene germline mutations. The remaining familial site-specific ECs are largely comparable with HNPCC associated ECs, the main difference between these groups being MMR proficiency vs. deficiency. We studied the role of PI3K/AKT pathway in familial ECs as well and observed that PIK3CA amplifications are characteristic of familial site-specific EC without MMR gene germline mutations. Most of the high-level amplifications occurred in tumors with stable microsatellites, suggesting that these tumors are more likely associated with chromosomal rather than microsatellite instability and MMR defect. The existence of site-specific endometrial carcinoma as a separate entity remains equivocal until predisposing genes are identified. It is possible that no single highly penetrant gene for this proposed syndrome exists, it may, for example be due to a combination of multiple low penetrance genes. Despite advances in deciphering the molecular genetic background of HNPCC, it is poorly understood why certain organs are more susceptible than others to cancer development. We found that important determinants of the HNPCC tumor spectrum are, in addition to different predisposing germline mutations, organ specific target genes and different instability profiles, loss of heterozygosity at MLH1 locus, and MLH1 promoter methylation. This study provided more precise molecular classification of families with CRC and EC. Our observations on familial CRC and EC are likely to have broader significance that extends to sporadic CRC and EC as well.
Resumo:
Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.
Resumo:
Age-related macular degeneration (AMD; OMIM # 603075) is an eye disease of the elderly, signs of which appear after the age of 50. In the Western world it is a leading cause of permanent visual loss with a prevalence of 8.5% in persons under 54 years of age and of 37% in persons over 75 years of age. Early forms of AMD may be asymptomatic, but in the late forms usually a central scotoma in the visual field follows severely complicating daily tasks. Smoking, age, and genetic predisposition are known risk factors for AMD. Until recently no true susceptibility genes had been identified though the composition of drusen deposits, the hallmarks of AMD, has suggested that the complement system might play a role in the pathogenesis of AMD. When four groups reported in March 2005, that, on chromosome 1q32, a Y402H variant in the complement factor H (CFH) gene confers risk for AMD in independent Caucasian samples, a new period in the field of genetic research of AMD started. CFH is a key regulator of the complement system. Thus, it is logical to speculate, that it plays a role in the pathogenesis of AMD. We performed a case-control association study to analyse whether the CFH Y402H variant contain a risk for AMD in the Finnish population. Although the population of Finland represents a genetic isolate, the CFH Y402H polymorphism was associated with AMD also in our patient sample with similar risk allele frequencies as in the other Caucasian populations. We further evaluated the effects of this variant, but no association between lesion subtype (predominantly classic, minimally classic or occult lesion) or lesion size of neovascular AMD and the CFH Y402H variant was detected. Neither did the variant have an effect on the photodynamic therapy (PDT) outcome. The patients that respond to PDT carried the risk genotype as frequently as those who did not respond, and no difference was found in the number of PDT sessions needed in patients with or without the risk genotypes of CFH Y402H. Functional analyses, however, showed that the binding of C-reactive protein (CRP) to CFH was significantly reduced in patients with the risk genotype of Y402H. In the past two years, the LOC387715/ high-temperature requirement factor A1 (HTRA1) locus on 10q26 has also been repeatedly associated with AMD in several populations. The recent discovery of the LOC387715 protein on the mitochondrial outer membrane suggests that the LOC387715 gene, not HTRA1, is the true predisposing gene in this region, although its biological function is still unknown. In our Finnish patient material, patients with AMD carried the A69S risk genotype of LOC387715 more frequently than the controls. Also, for the first time, an interaction between the CFH Y402H and the LOC387715 A69S variants was found. The most recently detected susceptibilty gene of AMD, the complement component 3 (C3) gene, encodes the central component of the complement system, C3. In our Finnish sample, an additive gene effect for the C3 locus was detected, though weaker than the effects for the two main loci, CFH and LOC387715. Instead, the hemicentin-1 or the elongation of very long chain fatty acids-like 4 genes that have also been suggested as candidate genes for AMD did not carry a risk for AMD in the Finnish population. This was the first series of molecular genetic study of AMD in Finland. We showed that two common risk variants, CFH Y402H and LOC387715 A69S, represent a high risk of AMD also in the isolated Finnish population, and furthermore, that they had a statistical interaction. It was demonstrated that the CFH Y402H risk genotype affects the binding of CFH to CRP thus suggesting that complement indeed plays an important role in the pathogenesis of AMD.
Resumo:
The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic seizures, psychomotor regression and ataxia. Different disorders have been classified as PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity that has onset in childhood, being the most common cause of neurodegeneration in children. The primary aim of this thesis was to dissect the molecular genetic background of patients with childhood onset PME by studying candidate genes and attempting to identify novel PME-associated genes. Another specific aim was to study the primary protein properties of the most recently identified member of the NCL-causing proteins, MFSD8. To dissect the genetic background of a cohort of Turkish patients with childhood onset PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which together with 56 mutations found by collaborators raised the total number of known NCL mutations to 364. Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had originally been identified in a subset of mainly Turkish patients as the underlying cause of CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients from nine different countries were provided with a CLN7 molecular diagnosis, denoting the wide geographical occurrence of MFSD8 defects. The mutations are private with only one having been established by a founder-effect in the Roma population from the former Czechoslovakia. All mutations identified except one are associated with the typical clinical picture of variant late-infantile NCL. To address the trafficking properties of MFSD8, lysosomal targeting of the protein was confirmed in both neuronal and non-neuronal cells. The major determinant for this lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes the direct trafficking pathway en route to the lysosomes. Expression studies revealed the neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer as the predominant regions in which MFSD8 is expressed. To identify novel genes associated with childhood onset PME, a single nucleotide polymorphism (SNP) genomewide scan was performed in three small families and 18 sporadic patients followed by homozygosity mapping to determine the candidate loci. One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene that had previously been shown to cause infantile neuroaxonal dystrophy. Application of next-generation sequencing of candidate regions in the remaining two families led to identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 were reported to have early onset PME, rapid disease progression leading to dementia and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and the clinical delineation of their phenotype establish KCTD7 as a gene for early onset PME. The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly associated with childhood onset symptomatic epilepsy. The disease-associated role of TXNDC6 awaits verification through identification of additional mutations in patients with similar phenotypes. Completion of the genetic spectrum underlying childhood onset PMEs and understanding of the gene products functions will comprise important steps towards understanding the underlying pathogenetic mechanisms, and will possibly shed light on the general processes of neurodegeneration and nervous system regulation, facilitating the diagnosis, classification and possibly treatment of the affected cases.
Resumo:
The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.
Resumo:
Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.
Resumo:
Helicobacter pylori infection is a risk factor for gastric cancer, which is a major health issue worldwide. Gastric cancer has a poor prognosis due to the unnoticeable progression of the disease and surgery is the only available treatment in gastric cancer. Therefore, gastric cancer patients would greatly benefit from identifying biomarker genes that would improve diagnostic and prognostic prediction and provide targets for molecular therapies. DNA copy number amplifications are the hallmarks of cancers in various anatomical locations. Mechanisms of amplification predict that DNA double-strand breaks occur at the margins of the amplified region. The first objective of this thesis was to identify the genes that were differentially expressed in H. pylori infection as well as the transcription factors and signal transduction pathways that were associated with the gene expression changes. The second objective was to identify putative biomarker genes in gastric cancer with correlated expression and copy number, and the last objective was to characterize cancers based on DNA copy number amplifications. DNA microarrays, an in vitro model and real-time polymerase chain reaction were used to measure gene expression changes in H. pylori infected AGS cells. In order to identify the transcription factors and signal transduction pathways that were activated after H. pylori infection, gene expression profiling data from the H. pylori experiments and a bioinformatics approach accompanied by experimental validation were used. Genome-wide expression and copy number microarray analysis of clinical gastric cancer samples and immunohistochemistry on tissue microarray were used to identify putative gastric cancer genes. Data mining and machine learning techniques were applied to study amplifications in a cross-section of cancers. FOS and various stress response genes were regulated by H. pylori infection. H. pylori regulated genes were enriched in the chromosomal regions that are frequently changed in gastric cancer, suggesting that molecular pathways of gastric cancer and premalignant H. pylori infection that induces gastritis are interconnected. 16 transcription factors were identified as being associated with H. pylori infection induced changes in gene expression. NF-κB transcription factor and p50 and p65 subunits were verified using elecrophoretic mobility shift assays. ERBB2 and other genes located in 17q12- q21 were found to be up-regulated in association with copy number amplification in gastric cancer. Cancers with similar cell type and origin clustered together based on the genomic localization of the amplifications. Cancer genes and large genes were co-localized with amplified regions and fragile sites, telomeres, centromeres and light chromosome bands were enriched at the amplification boundaries. H. pylori activated transcription factors and signal transduction pathways function in cellular mechanisms that might be capable of promoting carcinogenesis of the stomach. Intestinal and diffuse type gastric cancers showed distinct molecular genetic profiles. Integration of gene expression and copy number microarray data allowed the identification of genes that might be involved in gastric carcinogenesis and have clinical relevance. Gene amplifications were demonstrated to be non-random genomic instabilities. Cell lineage, properties of precursor stem cells, tissue microenvironment and genomic map localization of specific oncogenes define the site specificity of DNA amplifications, whereas labile genomic features define the structures of amplicons. These conclusions suggest that the definition of genomic changes in cancer is based on the interplay between the cancer cell and the tumor microenvironment.
Resumo:
Within the last 15 years, several new leukoencephalopathies have been recognized. However, more than half of children with cerebral white matter abnormalities still have no specific diagnosis. Our aim was to classify unknown leukoencephalopathies and to identify new diseases among them. During the study, three subgroups of patients were delineated and examined further. First, we evaluated 38 patients with unknown leukoencephalopathy. Brain MRI findings were grouped into seven categories according to the predominant location of the abnormalities. The largest subgroups were myelination abnormalities (n=20) and periventricular white matter abnormalities (n=12). Six patients had uniform MRI findings with signal abnormalities in hemispheric white matter and in selective brain stem and spinal cord tracts. Magnetic resonance spectroscopy (MRS) showed elevated lactate and decreased N-acetylaspartate in the abnormal white matter. The patients presented with ataxia, tremor, distal spasticity, and signs of dorsal column dysfunction. This phenotype - leukoencephalopathy with brain stem and spinal cord involvement and elevated white matter lactate (LBSL) - was first published elsewhere in 2003. A new finding was development of a mild axonal neuropathy. The etiopathogenesis of this disease is unknown, but elevated white matter lactate in MRS suggests a mitochondrial disorder. Secondly, we studied 22 patients with 18q deletions. Clinical and MRI findings were correlated with molecularly defined size of the deletion. All patients with deletions between markers D18S469 and D18S1141 (n=18) had abnormal myelination in brain MRI, while four patients with interstitial deletions sparing that region, had normal myelination pattern. Haploinsufficiency of myelin basic protein is suggested to be responsible for this dysmyelination. Congenital aural atresia/stenosis was found in 50% of the cases and was associated with deletions between markers D18S812 (at 18q22.3) and D18S1141 (at q23). Last part of the study comprised 13 patients with leukoencephalopathy and extensive cerebral calcifications. They showed a spectrum of findings, including progressive cerebral cysts, retinal telangiectasias and angiomas, intrauterine growth retardation, skeletal and hematologic abnormalities, and severe intestinal bleeding, which overlap with features of the previously reported patients with "Coats plus" syndrome and "leukoencephalopathy with calcifications and cysts", suggesting that these disorders are related. All autopsied patients had similar neuropathologic findings showing calcifying obliterative microangiopathy. Our patients may represent an autosomally recessively inherited disorder because there were affected siblings and patients of both sexes. We have started genealogic and molecular genetic studies of this disorder.
Resumo:
Congenital long QT syndrome (LQTS) with an estimated prevalence of 1:2000-1:10 000 manifests with prolonged QT interval on electrocardiogram and risk for ventricular arrhythmias and sudden death. Several ion channel genes and hundreds of mutations in these genes have been identified to underlie the disorder. In Finland, four LQTS founder mutations of potassium channel genes account for up to 40-70% of genetic spectrum of LQTS. Acquired LQTS has similar clinical manifestations, but often arises from usage of QT-prolonging medication or electrolyte disturbances. A prolonged QT interval is associated with increased morbidity and mortality not only in clinical LQTS but also in patients with ischemic heart disease and in the general population. The principal aim of this study was to estimate the actual prevalence of LQTS founder mutations in Finland and to calculate their effect on QT interval in the Finnish background population. Using a large population-based sample of over 6000 Finnish individuals from the Health 2000 Survey, we identified LQTS founder mutations KCNQ1 G589D (n=8), KCNQ1 IVS7-2A>G (n=1), KCNH2 L552S (n=2), and KCNH2 R176W (n=16) in 27 study participants. This resulted in a weighted prevalence estimate of 0.4% for LQTS in Finland. Using a linear regression model, the founder mutations resulted in a 22- to 50-ms prolongation of the age-, sex-, and heart rate-adjusted QT interval. Collectively, these data suggest that one of 250 individuals in Finland may be genetically predisposed to ventricular arrhythmias arising from the four LQTS founder mutations. A KCNE1 D85N minor allele with a frequency of 1.4% was associated with a 10-ms prolongation in adjusted QT interval and could thus identify individuals at increased risk of ventricular arrhythmias at the population level. In addition, the previously reported associations of KCNH2 K897T, KCNH2 rs3807375, and NOS1AP rs2880058 with QT interval duration were confirmed in the present study. In a separate study, LQTS founder mutations were identified in a subgroup of acquired LQTS, providing further evidence that congenital LQTS gene mutations may underlie acquired LQTS. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by exercise-induced ventricular arrhythmias in a structurally normal heart and results from defects in the cardiac Ca2+ signaling proteins, mainly ryanodine receptor type 2 (RyR2). In a patient population of typical CPVT, RyR2 mutations were identifiable in 25% (4/16) of patients, implying that noncoding variants or other genes are involved in CPVT pathogenesis. A 1.1 kb RyR2 exon 3 deletion was identified in two patients independently, suggesting that this region may provide a new target for RyR2-related molecular genetic studies. Two novel RyR2 mutations showing a gain-of-function defect in vitro were identified in three victims of sudden cardiac death. Extended pedigree analyses revealed some surviving mutation carriers with mild structural abnormalities of the heart and resting ventricular arrhythmias suggesting that not all RyR2 mutations lead to a typical CPVT phenotype, underscoring the relevance of tailored risk stratification of a RyR2 mutation carrier.
Resumo:
Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.
Resumo:
The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.
Resumo:
Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleotide polymorphism (SNP) haplotypes. Mutation analyses were performed by direct sequencing. We identified 5 distinct mutations in the lactase (LCT) gene, encoding the enzyme that hydrolyzes lactose in the intestinal lumen. These findings facilitate genetic testing of CLD in clinical practice and enable genetic counseling. The present data also provide the basis for detailed characterization of the molecular pathogenesis of this disorder. Adult-type hypolactasia (MIM 223100) (lactase non-persistence, lactose intolerance) is an autosomal recessive gastrointestinal condition that is a result of a decline in the activity of lactase in the intestinal lumen after weaning. Adult-type hypolactasia is considered to be a normal phenomenon among mammals and symptoms are remarkably milder than experienced in CLD. Recently, a variant C/T-13910 was shown to associate with the adult-type hypolactasia trait, locating 13.9 kb upstream of the LCT gene. In this study, the functional significance of the C/T-13910 variant was determined by studying the LCT mRNA levels in intestinal biopsy samples in children and adults with different genotypes. RT-PCR followed by solid-phase minisequencing was applied to determine the relative expression levels of the LCT alleles using an informative SNP located in exon 1. In children, the C-13910 allele was observed to be downregulated after five years of age in parallel with lactase enzyme activity. The expression of the LCT mRNA in the intestinal mucosa in individuals with the T-13910 A-22018 alleles was 11.5 times higher than that found in individuals with the C-13910, G-22018 alleles. These findings suggest that the C/T-13910 associated with adult-type hypolactasia is associated with the transcriptional regulation of the LCT gene. The presence of the T-13910 A-22018 allele also showed significant elevation lactase activity. Galactose, the hydrolysing product of the milk sugar lactose, has been hypothesized to be poisonous to ovarian epithelial cells. Hence, consumption of dairy products and lactase persistence has been proposed to be a risk factor for ovarian carcinoma. To investigate whether lactase persistence is related to the risk of ovarian carcinoma the C/T-13910 genotype was determined in a cohort of 782 women with ovarian carcinoma 1331 individuals serving as controls. Lactase persistence did not associate significantly with the risk for ovarian carcinoma in the Finnish, in the Polish or in the Swedish populations. The findings do not support the hypothesis that lactase persistence increases the risk for ovarian carcinoma.
Resumo:
Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.
Resumo:
Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.