26 resultados para Discrete valued features
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.
Resumo:
Tasaikäisen metsän alle muodostuvilla alikasvoksilla on merkitystä puunkorjuun, metsänuudistamisen, näkemä-ja maisema-analyysien sekä biodiversiteetin ja hiilitaseen arvioinnin kannalta. Ilma-aluksista tehtävä laserkeilaus on osoittautunut tehokkaaksi kaukokartoitusmenetelmäksi varttuneiden puustojen mittauksessa. Laserkeilauksen käyttöönotto operatiivisessa metsäsuunnittelussa mahdollistaa aiempaa tarkemman tiedon tuottamisen alikasvoksista, mikäli alikasvoksen ominaisuuksia voidaan tulkita laseraineistoista. Tässä työssä käytettiin tarkasti mitattuja maastokoealoja ja kaikulaserkeilausaineistoja (discrete return LiDAR) usealta vuodelta (1–2 km lentokorkeus, 0,9–9,7 pulssia m-2). Laserkeilausaineistot oli hankittu Optech ALTM3100 ja Leica ALS50-II sensoreilla. Koealat edustavat suomalaisia tasaikäisiä männiköitä eri kehitysvaiheissa. Tutkimuskysymykset olivat: 1) Minkälainen on alikasvoksesta saatu lasersignaali yksittäisen pulssin tasolla ja mitkä tekijät signaaliin vaikuttavat? 2) Mikä on käytännön sovelluksissa hyödynnettävien aluepohjaisten laserpiirteiden selitysvoima alikasvospuuston ominaisuuksien ennustamisessa? Erityisesti haluttiin selvittää, miten laserpulssin energiahäviöt ylempiin latvuskerroksiin vaikuttavat saatuun signaaliin, ja voidaanko laserkaikujen intensiteetille tehdä energiahäviöiden korjaus. Puulajien väliset erot laserkaiun intensiteetissä olivat pieniä ja vaihtelivat keilauksesta toiseen. Intensiteetin käyttömahdollisuudet alikasvoksen puulajin tulkinnassa ovat siten hyvin rajoittuneet. Energiahäviöt ylempiin latvuskerroksiin aiheuttivat alikasvoksesta saatuun lasersignaaliin kohinaa. Energiahäviöiden korjaus tehtiin alikasvoksesta saaduille laserpulssin 2. ja 3. kaiuille. Korjauksen avulla pystyttiin pienentämään kohteen sisäistä intensiteetin hajontaa ja parantamaan kohteiden luokittelutarkkuutta alikasvoskerroksessa. Käytettäessä 2. kaikuja oikeinluokitusprosentti luokituksessa maan ja yleisimmän puulajin välillä oli ennen korjausta 49,2–54,9 % ja korjauksen jälkeen 57,3–62,0 %. Vastaavat kappa-arvot olivat 0,03–0,13 ja 0,10–0,22. Tärkein energiahäviöitä selittävä tekijä oli pulssista saatujen aikaisempien kaikujen intensiteetti, mutta hieman merkitystä oli myös pulssin leikkausgeometrialla ylemmän latvuskerroksen puiden kanssa. Myös 3. kaiuilla luokitustarkkuus parani. Puulajien välillä havaittiin eroja siinä, kuinka herkästi ne tuottavat kaiun laserpulssin osuessa puuhun. Kuusi tuotti kaiun suuremmalla todennäköisyydellä kuin lehtipuut. Erityisen selvä tämä ero oli pulsseilla, joissa oli energiahäviöitä. Laserkaikujen korkeusjakaumapiirteet voivat siten olla riippuvaisia puulajista. Sensorien välillä havaittiin selviä eroja intensiteettijakaumissa, mikä vaikeuttaa eri sensoreilla hankittujen aineistojen yhdistämistä. Myös kaiun todennäköisyydet erosivat jonkin verran sensorien välillä, mikä aiheutti pieniä eroavaisuuksia kaikujen korkeusjakaumiin. Aluepohjaisista laserpiirteistä löydettiin alikasvoksen runkolukua ja keskipituutta hyvin selittäviä piirteitä, kun rajoitettiin tarkastelu yli 1 m pituisiin puihin. Piirteiden selitysvoima oli parempi runkoluvulle kuin keskipituudelle. Selitysvoima ei merkittävästi alentunut pulssitiheyden pienentyessä, mikä on hyvä asia käytännön sovelluksia ajatellen. Lehtipuun osuutta ei pystytty selittämään. Tulosten perusteella kaikulaserkeilausta voi olla mahdollista hyödyntää esimerkiksi ennakkoraivaustarpeen arvioinnissa. Sen sijaan alikasvoksen tarkempi luokittelu (esim. puulajitulkinta) voi olla vaikeaa. Kaikkein pienimpiä alikasvospuita ei pystytä havaitsemaan. Lisää tutkimuksia tarvitaan tulosten yleistämiseksi erilaisiin metsiköihin.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.