41 resultados para Developmental pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circulatory system consists of the blood and lymphatic vessels. While blood vessels transport oxygen, cells, and nutrients to tissues, the lymphatic vessels collect fluid, cells, and plasma proteins from tissues to return back to the blood circulation. Angiogenesis, the growth of new blood vessels from pre-existing ones, is an important process involved in several physiological conditions such as inflammation, wound healing, and embryonic development. Furthermore, angiogenesis is found in many pathological conditions such as atherosclerosis and the growth and differentiation of solid tumors. Many tumor types spread via lymphatic vessels to form lymph node metastasis. The elucidation of the molecular players coordinating development of the vascular system has provided an array of tools for further insight of the circulatory system. The discovery of the Vascular Endothelial Growth Factor (VEGF) family members and their tyrosine kinase receptors (VEGFRs) has facilitated the understanding of the vasculature in different physiological and pathological situations. The VEGFRs are expressed on endothelial cells and mediate the growth and maintenance of both the blood and lymphatic vasculatures. This study was undertaken to address the role of VEGFR-2 specific signaling in maturation of blood vessels during neoangiogenesis and in lymphangiogenesis. We also wanted to differentiate between VEGFR-2 and VEGFR-3 specific signaling in lymphangiogenesis. We found that specific VEGFR-2 stimulation alone by gene therapeutic methods is not sufficient for production of mature blood vessels. However, VEGFR-2 stimulation in combination with expression of platelet-derived growth factor D (PDGF-D), a recently identified member of the PDGF growth factor family, was capable of stabilizing these newly formed vessels. Signaling through VEGFR-3 is crucial during developmental lymphangiogenesis, but we showed that the lymphatic vasculature becomes independent of VEGFR-3 signaling after the postnatal period. We also found that VEGFR-2 specific stimulation cannot rescue the loss of lymphatic vessels when VEGFR-3 signaling is blocked and that VEGFR-2 specific signals promote lymphatic vessel enlargement, but are not involved in vessel sprouting to generate new lymphatic vessels in vivo, in contrast to the VEGFR-2 dependent sprouting observed in blood vessels. In addition, we compared the inhibitory effects of a small molecular tyrosine kinase inhibitor of VEGFR-2 vs. VEGFR-3 specific signaling in vitro and in vivo. Our results showed that the tyrosine kinase inhibitor could equally affect physiological and pathological processes dependent on VEGFR-2 and VEGFR-3 driven angiogenesis or lymphangiogenesis. These results provide new insights into the VEGFR specific pathways required for pre- and postnatal angiogenesis as well as lymphangiogenesis, which could provide important targets and therapies for treatment of diseases characterized by abnormal angiogenesis or lymphangiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells are characterized by having a subset of internal membrane compartments, each one with a specifi c identity, structure and function. Proteins destined to be targeted to the exterior of the cell need to enter and progress through the secretory pathway. Transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi takes place by the selective packaging of proteins into COPII-coated vesicles at the ER membrane. Taking advantage of the extensive genetic tools available for S. cerevisiae we found that Hsp150, a yeast secretory glycoprotein, selectively exited the ER in the absence of any of the three Sec24p family members. Sec24p has been thought to be an essential component of the COPII coat and thus indispensable for exocytic membrane traffic. Next we analyzed the ability of Hsp150 to be secreted in mutants, where post-Golgi transport is temperature sensitive. We found that Hsp150 could be selectively secreted under conditions where the exocyst component Sec15p is defective. Analysis of the secretory vesicles revealed that Hsp150 was packaged into a subset of known secretory vesicles as well as in a novel pool of secretory vesicles at the level of the Golgi. Secretion of Hsp150 in the absence of Sec15p function was dependent of Mso1p, a protein capable of interacting with vesicles intended to fuse with the plasma membrane, with the SNARE machinery and with Sec1p. This work demonstrated that Hsp150 is capable of using alternative secretory pathways in ER-to-Golgi and Golgi-to-plasma membrane traffi c. The sorting signals, used at both stages of the secretory pathway, for secretion of Hsp150 were different, revealing the highly dynamic nature and spatial organization of the secretory pathway. Foreign proteins usually misfold in the yeast ER. We used Hsp150 as a carrier to assist folding and transport of heterologous proteins though the secretory pathway to the culture medium in both S. cerevisiae and P. pastoris. Using this technique we expressed Hsp150Δ-HRP and developed a staining procedure, which allowed the visualization of the organelles of the secretory pathway of S. cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vuodenajat rytmittävät monivuotisten kasvien elämää pohjoisella pallonpuoliskolla, jolla varmin merkki lähestyvästä talvikaudesta on asteittain lyhenevä päivänpituus. Kun päivänpituus on lyhentynyt tiettyyn raja-arvoon saakka, kasvu hiipuu ja kasvin kehityksessä tapahtuu suuria muutoksia. Väitöskirjatyössäni tutkittiin mekanismeja, jotka liittyvät pituuskasvun päättymiseen, silmujen lepotilan kehittymiseen ja kärkisilmun muodostumiseen hybridihaavan ja koivuntaimilla lyhyen päivänpituuden seurauksena kasvihuoneolosuhteissa. Vain lepotilaiset silmut selviytyvät luonnossa ankaran talvikauden yli, joten etenkin lepotilan kehittymisen tutkiminen on keskeistä pyrittäessä selvittämään monivuotisille kasveille tyypillisen kasvutavan mekanismeja. Jo pitkään on tiedetty, että täysikasvuiset lehdet vastaanottavat tiedon päivänpituudesta ja lähettävät signaaleja varren johtojänteissä ylöspäin kohti kasvin kärkiosaa. Sen sijaan varren kärjen ja kärkikasvupisteen roolia lepotilan kehittymisessä on selvitetty vain vähän. Kuitenkin juuri kärkikasvupisteen selviytyminen vuodesta toiseen on tärkeää, koska sen jakautumiskykyiset solukot tuottavat kasvin maanpäälliset osat. Tässä työssä tehdyissä varttamiskokeissa osoitettiin, että varren kärki ei ainoastaan vastaanota signaaleja lehdistä ja ajoita toimintaansa niiden mukaan, vaan myös kärjellä itsellään on aktiivinen rooli lepotilan kehittymisessä. Erityisesti kiinnitettiin huomiota kärkikasvupisteen eri alueiden, ns. apikaalimeristeemin ja rib-meristeemin erilaisiin tehtäviin ja pääteltiin, että molemmat vaikuttavat lepotilan kehittymiseen. Kokeissa käytettiin normaalien hybridihaapojen lisäksi siirtogeenisiä hybridihaapoja, jotka eivät lopeta kasvuaan lyhyt päivä –olosuhteissa. Siirtogeeniset hybridihaavat ilmensivät voimakkaasti fytokromi A -nimistä valon vastaanottajamolekyyliä rib-meristeemin alueella, mikä saattoi osaltaan vaikuttaa poikkeavaan pituuskasvukäyttäytymiseen. Myös useiden lepotilan kehittymiseen liittyvien geenien ilmenemisessä havaittiin poikkeavuuksia verrattuna ei-siirtogeenisiin kontrolleihin, joiden silmuissa kehittyi lepotila lyhyt päivä –altistuksen seurauksena. Väitöskirjatyössäni havaittiin, että myös kaasumainen kasvihormoni etyleeni toimii viestinvälittäjänä silmujen lepotilan kehittymisessä ja vaikuttaa etenkin lepotilan oikeaan ajoittumiseen. Etyleenillä huomattiin olevan määräävä rooli päätesilmun muodostumisessa: siirtogeeniset koivut, jotka eivät aisti etyleeniä, eivät muodostaneet päätesilmua. Silti siirtogeeniset koivut vaipuivat lepotilaan, joskin myöhemmin kuin ei-siirtogeeniset kontrollit. Tämän perusteella todettiin, että lepotilan ja päätesilmun kehittyminen ovat erillisiä kehitystapahtumia, vaikka ne saattavatkin ajoittua osaksi päällekkäin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an ongoing controversy as to which methods in total hip arthroplasty (THA) could provide young patients with best long-term results. THA is an especially demanding operation in patients with severely dysplastic hips. The optimal surgical treatment for these patients also remains controversial. The aim of this study was to evaluate the long-term survival of THA in young patients (<55 years at the time of the primary operation) on a nation-wide level, and to analyze the long-term clinical and radio-graphical outcome of uncemented THA in patients with severely dysplastic joints. Survival of 4661 primary THAs performed for primary osteoarthritis (OA), 2557 primary THAs per-formed for rheumatoid arthritis (RA), and modern uncemented THA designs performed for primary OA in young patients, were analysed from the Finnish Arthroplasty Register. A total of 68 THAs were per-formed in 56 consecutive patients with high congenital hip dislocation between 1989-1994, and 68 THAs were performed in 59 consecutive patients with severely dysplastic hips and a previous Schanz osteotomy of the femur between 1988-1995 at the Orton Orthopaedic Hospital, Helsinki, Finland. These patients underwent a detailed physical and radiographical evaluation at a mean of 12.3 years and 13.0 years postoperatively, respectively. The risk of stem revision due to aseptic loosening in young patients with primary OA was higher for cemented stems than for proximally porous-coated or HA-coated uncemented stems implanted over the 1991-2001 period. There was no difference in the risk of revision between all-poly cemented-cups and press-fit porous-coated uncemented cups implanted during the same period, when the end point was defined as any revision (including exchange of liner). All uncemented stem designs studied in young patients with primary OA had >90% survival rates at 10 years. The Biomet Bi-Metric stem had a 95% (95% CI 93-97) survival rate even at 15 years. When the end point was defined as any revision, 10 year survival rates of all uncemented cup designs except the Harris-Galante II decreased to <80%. In young patients with RA, the risk of stem revision due to aseptic loosening was higher with cemented stems than with proximally porous-coated uncemented stems. In contrast, the risk of cup revision was higher for all uncemented cup concepts than for all-poly cemented cups with any type of cup revision as the end point. The Harris hip score increased significantly (p<0.001) both in patients with high con-genital hip dislocation and in patients with severely dysplastic hips and a previous Schanz osteotomy, treated with uncemented THA. There was a negative Trendelenburg sign in 92% and in 88% of hips, respectively. There were 12 (18%) and 15 (22%) perioperative complications. The rate of survival for the CDH femoral components, with revision due to aseptic loosening as the end point, was 98% (95% CI 97-100) at 10 years in patients with high hip dislocation and 92% (95% CI, 86-99) at 14 years in patients with a previous Schanz osteotomy. The rate of survival for press-fit, porous-coated acetabular components, with revision due to aseptic loosening as the end point, was 95% (95% CI 89-100) at 10 years in patients with high hip dislocation, and 98% (95% CI 89-100) in patients with a previous Schanz osteotomy. When revision of the cup for any reason was defined as the end point, 10 year sur-vival rates declined to 88% (95% CI 81-95) and to 69% (95% CI, 56-82), respectively. For young patients with primary OA, uncemented proximally circumferentially porous- and HA-coated stems are the implants of choice. However, survival rates of modern uncemented cups are no better than that of all-poly cemented cups. Uncemented proximally circumferentially porous-coated stems and cemented all-poly cups are currently the implants of choice for young patients with RA. Uncemented THA, with placement of the cup at the level of the true acetabulum, distal advancement of the greater trochanter and femoral shortening osteotomy provided patients with high congenital hip dislocation good long-term outcomes. Most of the patients with severely dysplastic hips and a previous Schanz osteotomy can be successfully treated with the same method. However, the subtrochanteric segmental shortening with angular correction gives better leg length correction for the patients with a previous low-seated unilateral Schanz osteotomy.