19 resultados para Deep Inference, Proof Theory, Teoria della Dimostrazione, Cut elimination, Gentzen Hauptsatz
Resumo:
Governance has been one of the most popular buzzwords in recent political science. As with any term shared by numerous fields of research, as well as everyday language, governance is encumbered by a jungle of definitions and applications. This work elaborates on the concept of network governance. Network governance refers to complex policy-making situations, where a variety of public and private actors collaborate in order to produce and define policy. Governance is processes of autonomous, self-organizing networks of organizations exchanging information and deliberating. Network governance is a theoretical concept that corresponds to an empirical phenomenon. Often, this phenomenon is used to descirbe a historical development: governance is often used to describe changes in political processes of Western societies since the 1980s. In this work, empirical governance networks are used as an organizing framework, and the concepts of autonomy, self-organization and network structure are developed as tools for empirical analysis of any complex decision-making process. This work develops this framework and explores the governance networks in the case of environmental policy-making in the City of Helsinki, Finland. The crafting of a local ecological sustainability programme required support and knowledge from all sectors of administration, a number of entrepreneurs and companies and the inhabitants of Helsinki. The policy process relied explicitly on networking, with public and private actors collaborating to design policy instruments. Communication between individual organizations led to the development of network structures and patterns. This research analyses these patterns and their effects on policy choice, by applying the methods of social network analysis. A variety of social network analysis methods are used to uncover different features of the networked process. Links between individual network positions, network subgroup structures and macro-level network patterns are compared to the types of organizations involved and final policy instruments chosen. By using governance concepts to depict a policy process, the work aims to assess whether they contribute to models of policy-making. The conclusion is that the governance literature sheds light on events that would otherwise go unnoticed, or whose conceptualization would remain atheoretical. The framework of network governance should be in the toolkit of the policy analyst.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
Modern sample surveys started to spread after statistician at the U.S. Bureau of the Census in the 1940s had developed a sampling design for the Current Population Survey (CPS). A significant factor was also that digital computers became available for statisticians. In the beginning of 1950s, the theory was documented in textbooks on survey sampling. This thesis is about the development of the statistical inference for sample surveys. For the first time the idea of statistical inference was enunciated by a French scientist, P. S. Laplace. In 1781, he published a plan for a partial investigation in which he determined the sample size needed to reach the desired accuracy in estimation. The plan was based on Laplace s Principle of Inverse Probability and on his derivation of the Central Limit Theorem. They were published in a memoir in 1774 which is one of the origins of statistical inference. Laplace s inference model was based on Bernoulli trials and binominal probabilities. He assumed that populations were changing constantly. It was depicted by assuming a priori distributions for parameters. Laplace s inference model dominated statistical thinking for a century. Sample selection in Laplace s investigations was purposive. In 1894 in the International Statistical Institute meeting, Norwegian Anders Kiaer presented the idea of the Representative Method to draw samples. Its idea was that the sample would be a miniature of the population. It is still prevailing. The virtues of random sampling were known but practical problems of sample selection and data collection hindered its use. Arhtur Bowley realized the potentials of Kiaer s method and in the beginning of the 20th century carried out several surveys in the UK. He also developed the theory of statistical inference for finite populations. It was based on Laplace s inference model. R. A. Fisher contributions in the 1920 s constitute a watershed in the statistical science He revolutionized the theory of statistics. In addition, he introduced a new statistical inference model which is still the prevailing paradigm. The essential idea is to draw repeatedly samples from the same population and the assumption that population parameters are constants. Fisher s theory did not include a priori probabilities. Jerzy Neyman adopted Fisher s inference model and applied it to finite populations with the difference that Neyman s inference model does not include any assumptions of the distributions of the study variables. Applying Fisher s fiducial argument he developed the theory for confidence intervals. Neyman s last contribution to survey sampling presented a theory for double sampling. This gave the central idea for statisticians at the U.S. Census Bureau to develop the complex survey design for the CPS. Important criterion was to have a method in which the costs of data collection were acceptable, and which provided approximately equal interviewer workloads, besides sufficient accuracy in estimation.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.