30 resultados para CHARGED DIATOMIC-MOLECULES
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.
Resumo:
We performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 $\rm{fb}^{-1}$ of $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV, collected with the CDF II detector using a high transverse-momentum ($p_T$) muon trigger. The search used time-of-flight to isolate slowly moving, high-$p_T$ particles. One event passed our selection cuts with an expected background of $1.9 \pm 0.2$ events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/$c^2$ at 95% C.L.
Resumo:
We report the recent charged Higgs search in top quark decays in 2.2/fb CDF data. This is the first attempt to search for charged Higgs using fully reconstructed mass assuming H->c-sbar in small tan beta region. No evidence of a charged Higgs is observed in the CDF data, hence 95% upper limits are placed at B(t->H+b)
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta|
Resumo:
Background and aims: Low stage and curative surgery are established factors for improved survival in gastric cancer. However, not all low-stage patients have a good prognosis. Cyclooxygenase-2 (COX-2) is known to associate with reduced survival in several cancers, and has been shown to play an important role in gastric carcinogenesis. Since new and better prognostic markers are needed for gastric cancer, we studied the prognostic significance of COX-2 and of markers that associate with COX-2 expression. We also studied markers reflecting proliferation and apoptosis, and evaluated their association with COX-2. Our purpose was to construct an accurate prognostic model by combining tissue markers and clinicopathogical factors. Materials and methods: Of 342 consecutive patients who underwent surgery for gastric cancer at Meilahti Hospital, Helsinki University Central Hospital, 337 were included in this study. Low stages I to II were represented by 141 (42%) patients, and high stages III to IV by 196 (58%). Curative surgery was performed on 176 (52%) patients. Survival data were obtained from the national registers. Slides from archive tissue blocks were prepared for immunohistochemistry by use of COX-2, human antigen R (HuR), cyclin A, matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), and Ki-67 antibodies. Immunostainings were scored by microscopy, and scores were entered into a database. Associations of tumor markers with clinicopathological factors were calculated, as well as associations with p53, p21, and results of flow cytometry from earlier studies. Survival analysis was performed by the Kaplan-Meier method, and Cox multivariate models were reconstructed. Cell culture experiments were performed to explore the effect of small interfering (si)RNA of HuR on COX-2 expression in a TMK-1 gastric cancer cell line. Results: Overall 5-year survival was 35.1%. Study I showed that COX-2 was an independent prognostic factor, and that the prognostic impact of COX-2 was more pronounced in low-stage patients. Cytoplasmic HuR expression also associated with reduced survival in gastric cancer patients in a non-independent manner. Cell culture experiments showed that HuR can regulate COX-2 expression in TMK-1 cells in vitro, with an association also between COX-2 and HuR tissue expression in a clinical material. In Study II, cyclin A was an independent prognostic factor and was associated with HuR expression in the gastric cancer material. The results of Study III showed that epithelial MMP-2 associated with survival in univariate, but not in multivariate analysis. However, MMP-9 showed no prognostic value. MMP-2 expression was associated with COX-2 expression. In Study IV, the prognostic power of COX-2 was compared with that of all tested markers associated with survival in Studies I to III, as well as with p21, p53, and flow cytometry results. COX-2 and p53 were independent prognostic factors, and COX-2 expression was associated with that of p53 and Ki-67 and also with aneuploidy. Conclusions: COX-2 is an independent prognostic factor in gastric cancer, and its prognostic power emerges especially in low stage cancer. COX-2 is regulated by HuR, and is associated with factors reflecting invasion, proliferation, and apoptosis. In an extended multivariate model, COX-2 retained its position as an independent prognosticator. COX-2 can be considered a promising new prognostic marker in gastric cancer.
Resumo:
Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.
Resumo:
Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.
Resumo:
Aerosol particles have effect on climate, visibility, air quality and human health. However, the strength of which aerosol particles affect our everyday life is not well described or entirely understood. Therefore, investigations of different processes and phenomena including e.g. primary particle sources, initial steps of secondary particle formation and growth, significance of charged particles in particle formation, as well as redistribution mechanisms in the atmosphere are required. In this work sources, sinks and concentrations of air ions (charged molecules, cluster and particles) were investigated directly by measuring air molecule ionising components (i.e. radon activity concentrations and external radiation dose rates) and charged particle size distributions, as well as based on literature review. The obtained results gave comprehensive and valuable picture of the spatial and temporal variation of the air ion sources, sinks and concentrations to use as input parameters in local and global scale climate models. Newly developed air ion spectrometers (Airel Ltd.) offered a possibility to investigate atmospheric (charged) particle formation and growth at sub-3 nm sizes. Therefore, new visual classification schemes for charged particle formation events were developed, and a newly developed particle growth rate method was tested with over one year dataset. These data analysis methods have been widely utilised by other researchers since introducing them. This thesis resulted interesting characteristics of atmospheric particle formation and growth: e.g. particle growth may sometimes be suppressed before detection limit (~ 3 nm) of traditional aerosol instruments, particle formation may take place during daytime as well as in the evening, growth rates of sub-3 nm particles were quite constant throughout the year while growth rates of larger particles (3-20 nm in diameter) were higher during summer compared to winter. These observations were thought to be a consequence of availability of condensing vapours. The observations of this thesis offered new understanding of the particle formation in the atmosphere. However, the role of ions in particle formation, which is not well understood with current knowledge, requires further research in future.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.