23 resultados para CELLULAR UPTAKE
Resumo:
Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.
Resumo:
Autoimmune diseases are a major health problem. Usually autoimmune disorders are multifactorial and their pathogenesis involves a combination of predisposing variations in the genome and other factors such as environmental triggers. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare, recessively inherited, autoimmune disease caused by mutations in a single gene. Patients with APECED suffer from several organ-specific autoimmune disorders, often affecting the endocrine glands. The defective gene, AIRE, codes for a transcriptional regulator. The AIRE (autoimmune regulator) protein controls the expression of hundreds of genes, representing a substantial subset of tissue-specific antigens which are presented to developing T cells in the thymus and has proven to be a key molecule in the establishment of immunological tolerance. However, the molecular mechanisms by which AIRE mediates its functions are still largely obscure. The aim of this thesis has been to elucidate the functions of AIRE by studying the molecular interactions it is involved in by utilizing different cultured cell models. A potential molecular mechanism for exceptional, dominant, inheritance of APECED in one family, carrying a glycine 228 to tryptophan (G228W) mutation, was described in this thesis. It was shown that the AIRE polypeptide with G228W mutation has a dominant negative effect by binding the wild type AIRE and inhibiting its transactivation capacity in vitro. The data also emphasizes the importance of homomultimerization of AIRE in vivo. Furthermore, two novel protein families interacting with AIRE were identified. The importin alpha molecules regulate the nuclear import of AIRE by binding to the nuclear localization signal of AIRE, delineated as a classical monopartite signal sequence. The interaction of AIRE with PIAS E3 SUMO ligases, indicates a link to the sumoylation pathway, which plays an important role in the regulation of nuclear architecture. It was shown that AIRE is not a target for SUMO modification but enhances the localization of SUMO1 and PIAS1 proteins to nuclear bodies. Additional support for the suggestion that AIRE would preferably up-regulate genes with tissue-specific expression pattern and down-regulate housekeeping genes was obtained from transactivation studies performed with two models: human insulin and cystatin B promoters. Furthermore, AIRE and PIAS activate the insulin promoter concurrently in a transactivation assay, indicating that their interaction is biologically relevant. Identification of novel interaction partners for AIRE provides us information about the molecular pathways involved in the establishment of immunological tolerance and deepens our understanding of the role played by AIRE not only in APECED but possibly also in several other autoimmune diseases.
Resumo:
Studying neurodegeneration provides an opportunity to gain insights into normal cell physiology, and not just pathophysiology. In this thesis work the focus is on Infantile Neuronal Ceroid Lipofuscinosis (INCL). It is a recessively inherited lysosomal storage disorder. The disease belongs to the neuronal ceroid lipofuscinoses (NCLs), a group of common progressive neurodegenerative diseases of the childhood. Characteristic accumulation of autofluorescent storage material is seen in most tissues but only neurons of the central nervous system are damaged and eventually lost during the course of the disease leaving most other cell types unaffected. The disease is caused by mutations in the CLN1 gene, but the physiological function of the corresponding protein the palmitoyl protein thioesterase (PPT1) has remained elusive. The aim of this thesis work was to shed light on the molecular and cell biological mechanisms behind INCL. This study pinpointed the localization of PPT1 in axonal presynapses of neurons. It also established the role of PPT1 in early neuronal maturation as well as importance in mature neuronal synapses. This study revealed an endocytic defect in INCL patient cells manifesting itself as delayed trafficking of receptor and non-receptor mediated endocytic markers. Furthermore, this study was the first to connect the INCL storage proteins the sphingolipid activator proteins (SAPs) A and D to pathological events on the cellular level. Abnormal endocytic processing and intracellular re-localization was demonstrated in patient cells and disease model knock-out mouse neurons. To identify early affected cellular and metabolic pathways in INCL, knock-out mouse neurons were studied by global transcript profiling and functional analysis. The gene expression analysis revealed changes in neuronal maturation and cell communication strongly associated with the regulated secretory system. Furthermore, cholesterol metabolic pathways were found to be affected. Functional studies with the knock-out mouse model revealed abnormalities in neuronal maturation as well as key neuronal functions including abnormalities in intracellular calcium homeostasis and cholesterol metabolism. Together the findings, introduced in this thesis work, support the essential role of PPT1 in developing neurons as well as synaptic sites of mature neurons. Results of this thesis also elucidate early events in INCL pathogenesis revealing defective pathways ultimately leading to the neurodegenerative process. These results contribute to the understanding of the vital physiological function of PPT1 and broader knowledge of common cellular mechanisms behind neurodegeneration. These results add to the knowledge of these severe diseases offering basis for new approaches in treatment strategies.
Resumo:
Brain function is critically dependent on the ionic homeostasis in both the extra- and intracellular compartment. The regulation of brain extracellular ionic composition mainly relies on active transport at blood brain and at blood cerebrospinal fluid interfaces whereas intracellular ion regulation is based on plasmalemmal transporters of neurons and glia. In addition, the latter mechanisms can generate physiologically as well as pathophysiologically significant extracellular ion transients. In this work I have studied molecular mechanisms and development of ion regulation and how these factors alter neuronal excitability and affect synaptic and non-synaptic transmission with a particular emphasis on intracellular pH and chloride (Cl-) regulation. Why is the regulation of acid-base equivalents (H+ and HCO3-) and Cl- of such interest and importance? First of all, GABAA-receptors are permeable to both HCO3- and Cl-. In the adult mammalian central nervous system (CNS) fast postsynaptic inhibition relies on GABAA-receptor mediated transmission. Today, excitatory effects of GABAA-receptors, both in mature neurons and during the early development, have been recognized and the significance of the dual actions of GABA on neuronal communication has become an interesting field of research. The transmembrane gradients of Cl- and HCO3- determine the reversal potential of GABAA-receptor mediated postsynaptic potentials and hence, the function of pH and Cl- regulatory proteins have profound consequences on GABAergic signaling and neuronal excitability. Secondly, perturbations in pH can cause a variety of changes in cellular function, many of them resulting from the interaction of protons with ionizable side chains of proteins. pH-mediated alterations of protein conformation in e.g. ion channels, transporters, and enzymes can powerfully modulate neurotransmission. In the context of pH homeostasis, the enzyme carbonic anhydrase (CA) needs to be taken into account in parallel with ion transporters: for CO2/HCO3- buffering to act in a fast manner, CO2 (de)hydration must be catalyzed by this enzyme. The acid-base equivalents that serve as substrates in the CO2 dehydration-hydration reaction are also engaged in many carrier and channel mediated ion movements. In such processes, CA activity is in key position to modulate transmembrane solute fluxes and their consequences. The bicarbonate transporters (BTs; SLC4) and the electroneutral cation-chloride cotransporters (CCCs; SLC12) belong the to large gene family of solute carriers (SLCs). In my work I have studied the physiological roles of the K+-Cl- cotransporter KCC2 (Slc12a5) and the Na+-driven Cl--HCO3- exchanger NCBE (Slc4a10) and the roles of these two ion transporters in the modualtion of neuronal communication and excitability in the rodent hippocampus. I have also examined the cellular localization and molecular basis of intracellular CA that has been shown to be essential for the generation of prolonged GABAergic excitation in the mature hippocampus. The results in my Thesis provide direct evidence for the view that the postnatal up-regulation of KCC2 accounts for the developmental shift from depolarizing to hyperpolarizing postsynaptic EGABA-A responses in rat hippocampal pyramidal neurons. The results also indicate that after KCC2 expression the developmental onset of excitatory GABAergic transmission upon intense GABAA-receptor stimulation depend on the expression of intrapyramidal CA, identified as the CA isoform VII. Studies on mice with targeted Slc4a10 gene disruption revealed an important role for NCBE in neuronal pH regulation and in pH-dependent modulation of neuronal excitability. Furthermore, this ion transporter is involved in the basolateral Na+ and HCO3- uptake in choroid plexus epithelial cells, and is thus likely to contribute to cerebrospinal fluid production.
Resumo:
In this thesis I examine one commonly used class of methods for the analytic approximation of cellular automata, the so-called local cluster approximations. This class subsumes the well known mean-field and pair approximations, as well as higher order generalizations of these. While a straightforward method known as Bayesian extension exists for constructing cluster approximations of arbitrary order on one-dimensional lattices (and certain other cases), for higher-dimensional systems the construction of approximations beyond the pair level becomes more complicated due to the presence of loops. In this thesis I describe the one-dimensional construction as well as a number of approximations suggested for higher-dimensional lattices, comparing them against a number of consistency criteria that such approximations could be expected to satisfy. I also outline a general variational principle for constructing consistent cluster approximations of arbitrary order with minimal bias, and show that the one-dimensional construction indeed satisfies this principle. Finally, I apply this variational principle to derive a novel consistent expression for symmetric three cell cluster frequencies as estimated from pair frequencies, and use this expression to construct a quantitatively improved pair approximation of the well-known lattice contact process on a hexagonal lattice.