71 resultados para Antibody gene diversification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mulibrey nanism is a hereditary developmental disorder, characterized by prenatal onset growth failure without postnatal catch-up growth, distinctive craniofacial features, progressive cardiopathy and failure of sexual maturation. In addition, the patients develop insulin resistance syndrome and type 2 diabetes and they have an increased risk of developing tumors. The TRIM37 gene that underlies mulibrey nanism encodes for a member of the tripartite motif (TRIM) protein family. The physiological function of TRIM37 and the pathogenetic mechanisms leading from TRIM37 dysfunction to the mulibrey nanism phenotype are unknown. However, TRIM37 localizes at least partially to peroxisomes, and possesses ubiquitin E3-ligase activity. Thus, it may mediate ubiquitin dependent protein degradation, suggesting that accumulation of yet unknown substrate proteins may underlie the disease pathogenesis. In this study, the TRIM37 gene was characterized in detail. A transcription initiation window, with several separate transcription start sites, was identified and the putative promoter region immediately upstream from the transcription initiation window was shown to possess basal promoter activity. Further, several alternative splice variants of the gene were identified, including a highly expressed testis specific variant, encoding for an identical protein product with the main transcript. Expression of TRIM37 mRNA was detected in several different tissues, with highest expression seen in testis and in brain, when the expression patterns of the two major transcripts in different human tissues were studied by quantitative real-time PCR. Several mulibrey nanism patients were studied and thirteen novel mutations in TRIM37 were found, including three mutations (p.Gly322Val, p.Cys109Ser, p.Glu271_Ser287), that are likely to express mutant TRIM37 proteins. These mutations were further shown to alter the subcellular localization of the mutant proteins. Most of the mulibrey nanism associated mutations however, lead to premature termination codons and degradation of mRNA. All the TRIM37 mutations identified to date predict loss-of-function alleles, and thus no phenotype-genotype correlation is seen among the patients. In order to understand the pathogenetic mechanisms underlying mulibrey nanism, an animal model for the disorder is needed. For the development of a Trim37 knock-out mouse, the mouse Trim37 gene was characterized. Alternative splice variants, were identified, including a testis specific variant predicting a longer protein product. Further, a strictly tissue and cell-specific pattern of Trim37 expression was observed in developing and adult mouse tissues, when studied by immunohistochemical methods. This distribution of Trim37 expression in mouse tissues is in agreement with the clinical findings in human mulibrey nanism patients. This thesis work gives new tools for the diagnostics of mulibrey nanism as well as for studying the molecular pathogenesis behind this interesting disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syanobakteerit (sinilevät) ovat olleet Itämeressä koko nykymuotoisen Itämeren ajan, sillä paleolimnologiset todisteet niiden olemassaolosta Itämeren alueella ovat noin 7000 vuoden takaa. Syanobakteerien massaesiintymät eli kukinnat ovat kuitenkin sekä levinneet laajemmille alueille että tulleet voimakkaimmiksi viimeisten vuosikymmenien aikana. Tähän on osasyynä ihmisten aiheuttama kuormitus, joka rehevöittää Itämerta. Suomenlahti, jota tämä tutkimus käsittelee, on kärsinyt tästä rehevöitymiskehityksestä muita Itämeren altaita enemmän. Syanobakteerit muodostavat jokakesäisiä kukintoja Suomenlahdella - niin sen avomerialueilla kuin rannoillakin. Yleisimmät kukintoja muodostavat syanobakteerisuvut ovat Nodularia, Anabaena ja Aphanizomenon. Kukinnat aiheuttavat paitsi esteettistä haittaa myös terveydellisen riskitekijän. Niiden myrkyllisyys liitetään usein Nodularia-suvun tuottamaan nodulariini-maksamyrkkyyn. Itämeren Aphanizomenon-suvun on todettu olevan myrkytön. Vaikka Itämeren kukintoja aiheuttavista Nodularia- ja Aphanizomenon-syanobakteereista tiedetään varsin paljon, on molekyylimenetelmiin pohjautuva syanobakteeritutkimus ohittanut Itämeren Anabaena-suvun monelta osin. Tämän työn tarkoituksena oli syventää käsitystämme Itämeren Anabaena-syanobakteerista, sen mahdollisesta myrkyllisyydestä, geneettisestä monimuotoisuudesta ja fylogeneettisista sukulaisuussuhteista. Tässä työssä eristettiin 49 planktista Anabaena-kantaa, joista viisi tuottivat mikrokystiinejä. Tämä oli ensimmäinen yksiselitteinen todiste, että Itämeren Anabaena tuottaa maksamyrkyllisiä mikrokystiini-yhdisteitä. Jokainen eristetty myrkyllinen Anabaena-kanta tuotti useita mikrokystiini-variantteja. Lisäksi mikrokystiinejä löydettiin kukintanäytteistä, joissa oli myrkkyä syntetisoivia geenejä sisältäneitä Anabaena-syanobakteereita. Myrkkyjä löydettiin molempina tutkimusvuosina 2003 ja 2004. Myrkkyjen esiintyminen ei siten ollut vain yksittäinen ilmiö. Tässä työssä saimme viitteitä siitä, että maksamyrkyllinen Anabaena-syanobakteeri esiintyisi vähäsuolaisissa vesissä. Tämä riippuvuussuhde jää kuitenkin tulevien tutkimuksien selvitettäväksi. Tässä työssä havaittiin mikrokystiinisyntetaasi-geenien inaktivoituminen Itämeren Anabaena-kannassa ja kukintanäytteissä. Kuvasimme Anabaena-kannan mikrokystiinisyntetaasigeenien sisältä insertioita, jotka hyvin todennäköisesti inaktivoivat myrkyntuoton. Insertion sisältäneeltä kannalta löysimme kuitenkin kaikki mikrokystiinisyntetaasigeenit osoittaen, että geenien olemassaolo ei välttämättä varmista kannan mikrokystiinintuottoa. Mielenkiintoista oli se, että inaktivaation aiheuttavia insertioita löytyi kukintanäytteistä molemmilta tutkimusvuosilta. Vastaavia insertioita ei kuitenkaan löydetty makean veden Anabaena-kannoista tai järvinäytteistä. On yleistä, että syanobakteerikukinnoista löytyy usean syanobakteerisuvun edustajia. Myrkyllisiä sukuja tai lajeja ei voida kuitenkaan erottaa mikroskooppisesti myrkyttömistä. Käsillä olevassa tutkimuksessa kehitettiin molekyylimenetelmä, jolla on mahdollista määrittää kukinnan mahdollisesti maksamyrkylliset syanobakteerisuvut. Tätä menetelmää sovellettiin Itämeren kukintojen tutkimiseen. Itämeren pintavesistä ja ranta-alueiden pohjasta eristetyt Anabaena-kannat osoittautuivat geneettisesti monimuotoisiksi. Tämä Anabaena-syanobakteerien geneettinen monimuotoisuus vahvistettiin monistamalla geenejä suoraan kukintanäytteistä ilman kantojen eristystä. Makeiden vesien ja Itämeren Anabaena-kannat ovat geneettisesti hyvin samankaltaisia. Geneettisissä vertailuissa kävi kuitenkin ilmi, että pohjassa elävien Anabaena-kantojen geneettinen monimuotoisuus oli suurempaa kuin pintavesistä eristettyjen kantojen. Itämeren Anabaena-kantojen sekvenssit muodostivat omia ryhmiä sukupuun sisällä, jolloin on mahdollista, että nämä edustavat Itämeren omia Anabaena-ekotyyppejä. Tämä tutkimus oli ensimmäinen, jossa uusin molekyylimenetelmin systemaattisesti selvitettiin Itämeren Anabaena-syanobakteerin geneettistä populaatiorakennetta, fylogeniaa ja myrkyntuottoa. Tulevaisuudessa monitorointitutkimuksissa on otettava huomioon myös Itämeren Anabaena-syanobakteerin mahdollinen maksamyrkyntuotto – erityisesti vähäsuolaisemmilla rannikkovesillä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to identify some of the genes of the catabolic route of L-rhamnose in the yeast Pichia stipitis. There are at least two distinctly different pathways for L-rhamnose catabolism. The one described in bacteria has phosphorylated intermediates and the enzymes and the genes of this route have been described. The pathway described in yeast does not have phosphorylated intermediates. The intermediates and the enzymes of this pathway are known but none of the genes have been identified. The work was started by purifying the L-rhamnose dehydrogenase, which oxidates L-rhamnose to rhamnonic acid-gamma-lactone. NAD is used as a cofactor in this reaction. A DEAE ion exchange column was used for purification. The active fraction was further purified using a non-denaturing PAGE and the active protein identified by zymogram staining. In the last step the protein was separated in a SDS-PAGE, the protein band trypsinated and analysed by MALDI-TOF MS. This resulted in the identification of the corresponding gene, RHA1, which was then, after a codon change, expressed in Saccharomyces cerevisiae. Also C- or N-terminal histidine tags were added but as the activity of the enzyme was lost or strongly reduced these were not used. The kinetic properties of the protein were analysed in the cell extract. Substrate specifity was tested with different sugars; L-rhamnose, L-lyxose and L-mannose were oxidated by the enzyme. Vmax values were 180 nkat/mg, 160 nkat/mg and 72 nkat/mg, respectively. The highest affinity was towards L-rhamnose, the Km value being 0.9 mM. Lower affinities were obtained with L-lyxose, Km 4.3 mM, and L-mannose Km 25 mM. Northern analysis was done to study the transcription of RHA1 with different carbon sources. Transcription was observed only on L-rhamnose suggesting that RHA1 expression is L-rhamnose induced. A RHA1 deletion cassette for P. stipitis was constructed but the cassette had integrated randomly and not targeted to delete the RHA1 gene. Enzyme assays for L-lactaldehyde dehydrogenase were done similarly to L-rhamnose dehydrogenase assays. NAD is used as a cofactor also in this reaction where L-lactaldehyde is oxidised to L-lactate. The observed enzyme activities were very low and the activity was lost during the purification procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rural income diversification has been found to be rather the norm than the exception in developing countries. Smallholder households tend to diversify their income sources because of the need to manage risks, secure a smooth flow of income, allocate surplus labour, respond to various kinds of market failures, and apply coping strategies. The Agricultural Household Model provides a theoretical rationale for income diversification in that rural households aim at maximising their utility. There are several elements involved, such as agricultural production for their own consumption and markets, leisure activities and income from non-farm sources. The aim of the present study is to enhance understanding of the processes of rural income generation and diversification in eastern Zambia. Specifically, it explores the relationship between household characteristics, asset endowments and income-generation patterns. According to the sustainable- rural-livelihoods framework, the assets a household possesses shape its capacity to seize new economic opportunities. The study is based on two surveys conducted among rural smallholder households in four districts of Eastern Province in Zambia in 1985/86 and 2003. Sixty-seven of the interviewed households were present in both surveys and this panel allows comparison between the two points of time. The initial descriptive analysis is complemented with an econometric analysis of the relationships between household assets and income sources. The results show that, on average, 30 per cent of the households income originated from sources outside their own agriculture. There was a slight increase in the proportion of non-farm income from 1985/86 to 2003, but total income clearly declined mainly on account of diminishing crop income. The land area the household was able to cultivate, which is often dependent on the available labour, was the most significant factor affecting both the household-income level and the diversification patterns. Diversification was, in most cases, a coping strategy rather than a voluntary choice. Measured as income/capita/day, all households were below the poverty line in 2003. The agricultural reforms in Zambia, combined with other trends such as changes in rainfall pattern, the worsening livestock situation and the incidence of human disease, had a negative impact on agricultural productivity and income between 1985/86 and 2003. Sources of non-farm income were closely linked to agriculture either upstream or downstream and the income they generated was not enough to compensate for the decline of agricultural income. Household assets and characteristics had a smaller impact on diversification patterns than expected, which could reflect the lack of opportunities in the remote rural environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.