268 resultados para Metsäekologia, metsien kasvun ekologia
Resumo:
Genetic studies on phylogeography and adaptive divergence in Northern Hemisphere fish species such as three-spined stickleback (Gasterosteus aculeatus) provide an excellent opportunity to investigate genetic mechanisms underlying population differentiation. According to the theory, the process of population differentiation results from a complex interplay between random and deterministic processes as well historical factors. The main scope in this thesis was to study how historical factors like the Pleistocene ice ages have shaped the patterns molecular diversity in three-spined stickleback populations in Europe and how this information could be utilized in the conservation genetic context. Furthermore, identifying footprints of natural selection at the DNA level might be used in identifying genes involved in evolutionary change. Overall, the results from phylogeographic studies indicate that the three-spined stickleback has colonized the Atlantic basin relatively recently but constitutes three major evolutionary lineages in Europe. In addition, the colonization of freshwater appears to result from multiple and independent invasions by the marine conspecifics. Molecular data together with morphology suggest that the most divergent freshwater populations are located in the Balkan Peninsula and these populations deserve a special conservation genetic status without warranting further taxonomical classification. In order to investigate the adaptive divergence in Fennoscandian three-spined stickleback populations several approaches were used. First, sequence variability in the Eda-gene, coding for the number of lateral plates, was concordant with the previously observed global pattern. Full plated allele is in high frequencies among marine populations whereas low plated allele dominates in the freshwater populations. Second, a microsatellite based genome scan identified both indications of balancing and directional selection in the three-spined stickleback genome, i.e. loci with unusually similar or unusually different allele frequencies over populations. The directionally selected loci were mainly associated with the adaptation to freshwater. A follow up study conducting a more detailed analysis in a chromosome region containing a putatively selected gene locus identified a fairly large genomic region affected by natural selection. However, this region contained several gene predictions, all of which might be the actual target of natural selection. All in all, the phylogeographic and adaptive divergence studies indicate that most of the genetic divergence has occurred in the freshwater populations whereas the marine populations have remained relatively uniform.
Resumo:
Climate change will influence the living conditions of all life on Earth. For some species the change in the environmental conditions that has occurred so far has already increased the risk of extinction, and the extinction risk is predicted to increase for large numbers of species in the future. Some species may have time to adapt to the changing environmental conditions, but the rate and magnitude of the change are too great to allow many species to survive via evolutionary changes. Species responses to climate change have been documented for some decades. Some groups of species, like many insects, respond readily to changes in temperature conditions and have shifted their distributions northwards to new climatically suitable regions. Such range shifts have been well documented especially in temperate zones. In this context, butterflies have been studied more than any other group of species, partly for the reason that their past geographical ranges are well documented, which facilitates species-climate modelling and other analyses. The aim of the modelling studies is to examine to what extent shifts in species distributions can be explained by climatic and other factors. Models can also be used to predict the future distributions of species. In this thesis, I have studied the response to climate change of one species of butterfly within one geographically restricted area. The study species, the European map butterfly (Araschnia levana), has expanded rapidly northwards in Finland during the last two decades. I used statistical and dynamic modelling approaches in combination with field studies to analyse the effects of climate warming and landscape structure on the expansion. I studied possible role of molecular variation in phosphoglucose isomerase (PGI), a glycolytic enzyme affecting flight metabolism and thereby flight performance, in the observed expansion of the map butterfly at two separate expansion fronts in Finland. The expansion rate of the map butterfly was shown to be correlated with the frequency of warmer than average summers during the study period. The result is in line with the greater probability of occurrence of the second generation during warm summers and previous results on this species showing greater mobility of the second than first generation individuals. The results of a field study in this thesis indicated low mobility of the first generation butterflies. Climatic variables alone were not sufficient to explain the observed expansion in Finland. There are also problems in transferring the climate model to new regions from the ones from which data were available to construct the model. The climate model predicted a wider distribution in the south-western part of Finland than what has been observed. Dynamic modelling of the expansion in response to landscape structure suggested that habitat and landscape structure influence the rate of expansion. In southern Finland the landscape structure may have slowed down the expansion rate. The results on PGI suggested that allelic variation in this enzyme may influence flight performance and thereby the rate of expansion. Genetic differences of the populations at the two expansion fronts may explain at least partly the observed differences in the rate of expansion. Individuals with the genotype associated with high flight metabolic rate were most frequent in eastern Finland, where the rate of range expansion has been highest.
Resumo:
The traditional aim of community ecology has been to understand the origin and maintenance of species richness in local communities. Why certain species occur in one place but not in another, how ecologically apparently similar species use resources, what is the role of the regional species pool in affecting species composition in local communities, and so forth. Madagascar offers great opportunities to conduct such studies, since it is a very large island that has been isolated for tens of million of years. Madagascar has remarkable faunal and floral diversity and species level endemism reaches 100% in many groups of species. Madagascar is also exceptional for endemism at high taxonomic levels and for the skewed representation of many taxa in comparison with continental faunas. For example, native ungulates that are dominant large herbivorous mammals on the African continent are completely lacking in Madagascar. The largest native Malagasy herbivores, and the main dung producers for Malagasy dung beetles, are the endemic primates, lemurs. Cattle was introduced to Madagascar about 1,000 yrs ago and is today abundant and widespread. I have studied Malagasy dung beetle communities and the distributional patterns of species at several spatial scales and compared the results with comparable communities in other tropical areas. There are substantial differences in dung beetle communities in Madagascar and elsewhere in the tropics in terms of the life histories of the species, species ecological traits, local and regional species diversities, and the sizes of species geographical ranges. These differences are attributed to Madagascar s ancient isolation, large size, heterogeneous environment, skewed representation of the mammalian fauna, and recent though currently great human impact.
Resumo:
The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.
Resumo:
Intensified agricultural practises introduced after the Second World War are identified as a major cause of global biodiversity declines. In several European countries agri-environment support schemes have been introduced to counteract the ongoing biodiversity declines. Farmers participating in agri-environment schemes are financially compensated for decreasing the intensity of farming practises leading to smaller yields and lower income. The Finnish agri-environment support scheme is composed of a set of measures, such as widened field margins along main ditches (obligatory measure), management of features increasing landscape diversity, management of semi-natural grasslands, and organic farming (special agreement measures). The magnitude of the benefits for biodiversity depends on landscape context and the properties of individual schemes. In this thesis I studied whether one agri-environment scheme, organic farming, is beneficial for species diversity and abundance of diurnal lepidopterans, bumblebees, carabid beetles and arable weeds. I found that organic farming did not enhance species richness of selected insect taxa, although bumblebee species richness tended to be higher in organic farms. Abundance of lepidopterans and bumblebees was not enhanced by organic farming, but carabid beetle abundance was higher in mixed farms with both cereal crop production and animal husbandry. Both species richness and abundance of arable weeds were higher in organic farms. My second objective was to study how landscape structure shapes farmland butterfly communities. I found that the percentage of habitat specialists and species with poor dispersal abilities in butterfly assemblages decreased with increasing arable field cover, leading to a dramatic decrease in butterfly beta diversity. In field boundaries local species richness of butterflies was linearly related to landscape species richness in geographic regions with high arable field cover, indicating that butterfly species richness in field boundaries is more limited by landscape factors than local habitat factors. In study landscapes containing semi-natural grasslands the relationship decelerated at high landscape species richness, suggesting that local species richness of butterflies in field boundaries is limited by habitat factors (demanding habitat specialists that occurred in semi-natural grasslands were absent in field margins). My results suggest that management options in field margins will affect mainly generalists, and species with good dispersal abilities, in landscapes with high arable field cover. Habitat specialists and species with poor dispersal abilities may benefit of management options if these are applied in the vicinity of source populations.
Resumo:
The biodiversity of farmland ecosystems has decreased remarkably during the latter half of the 20th century, and this development is due to intensive farming with its various environmental effects. In the countries of the EU the Common Agricultural Policy (CAP) is the main determinant affecting farmland biodiversity, since the agricultural policy defines guidelines of agricultural practices. In addition to policies promoting intensive farming, CAP also includes national agri-environment schemes (AES), in which a part of subsidies paid to farmers is directed to acts that are presumed to promote environmental protection and biodiversity. In order to shape AES into relevant and powerful tools for biodiversity protection, detailed studies on the effects of agriculture on species and species assemblages are needed. In my thesis I investigated the importance of habitat heterogeneity and effects of different habitat and landscape characteristics on farmland bird abundance and diversity in typical cereal cultivation-dominated southern Finnish agricultural environments. The extensive data used were collected by territory mapping. My two main study species were the drastically declined ortolan bunting (Emberiza hortulana) and the phenomenally increased tree sparrow (Passer montanus); in addition I studied assemblages of 20 species breeding in open arable and edge/bush habitats. In light of my results I discuss whether the Finnish AES take into account the habitat needs of farmland birds, and I provide suggestions for improvement of the future AES. My results show that heterogeneity of both uncultivated and cultivated habitats increases abundance and species richness among farmland birds, but in this respect the amount and diversity of uncultivated habitats are essential. Ditches in particular are a keystone structure for farmland birds in boreal landscapes. Ditches lined by trees or bushes increased ortolan bunting abundance. Loss of that kind of ditches (and clearance of forest and bush patches), reduced breeding ortolan buntings, mainly by decreasing availability of song-posts that are important for the breeding groups of the species. Heterogeneity of uncultivated habitats, most importantly open ditches and the habitat patch richness, increased densities and species richnesses of species assemblages of open arable and edge/bush habitats. Human impact (winter-feeding, nest-boxes) affected favourably the tree sparrow s rapid range expansion in southern Finland, but any habitat types had no significant effects. At the moment the Finnish agri-environmental policy does not conserve farmland ditches as a habitat type. Instead, sub-surface drainage is financially promoted. This is a fatal mistake as far as farmland biodiversity is concerned. In addition to the maintenance of ditches, at least the following aspects should be included more than is done previously in the measures of the future AES: 1) promotion of diverse crop rotation (especially by promoting animal husbandry), 2) maintenance of tree and bush vegetation in islets and along ditches, 3) promotion of organic farming.
Resumo:
While environmental variation is an ubiquitous phenomenon in the natural world which has for long been appreciated by the scientific community recent changes in global climatic conditions have begun to raise consciousness about the economical, political and sociological ramifications of global climate change. Climate warming has already resulted in documented changes in ecosystem functioning, with direct repercussions on ecosystem services. While predicting the influence of ecosystem changes on vital ecosystem services can be extremely difficult, knowledge of the organisation of ecological interactions within natural communities can help us better understand climate driven changes in ecosystems. The role of environmental variation as an agent mediating population extinctions is likely to become increasingly important in the future. In previous studies population extinction risk in stochastic environmental conditions has been tied to an interaction between population density dependence and the temporal autocorrelation of environmental fluctuations. When populations interact with each other, forming ecological communities, the response of such species assemblages to environmental stochasticity can depend, e.g., on trophic structure in the food web and the similarity in species-specific responses to environmental conditions. The results presented in this thesis indicate that variation in the correlation structure between species-specific environmental responses (environmental correlation) can have important qualitative and quantitative effects on community persistence and biomass stability in autocorrelated (coloured) environments. In addition, reddened environmental stochasticity and ecological drift processes (such as demographic stochasticity and dispersal limitation) have important implications for patterns in species relative abundances and community dynamics over time and space. Our understanding of patterns in biodiversity at local and global scale can be enhanced by considering the relevance of different drift processes for community organisation and dynamics. Although the results laid out in this thesis are based on mathematical simulation models, they can be valuable in planning effective empirical studies as well as in interpreting existing empirical results. Most of the metrics considered here are directly applicable to empirical data.
Resumo:
Predicting evolutionary outcomes and reconstructing past evolutionary transitions are among the main goals of evolutionary biology. Ultimately, understanding the mechanisms of evolutionary change will also provide answers to the timely question of whether and how organisms will adapt to changing environmental conditions. In this thesis, I have investigated the relative roles of natural selection, random genetic drift and genetic correlations in the evolution of complex traits at different levels of organisation from populations to individuals. I have shown that natural selection has been the driving force behind body shape divergence of marine and freshwater threespine stickleback (Gasterosteus aculeatus) populations, while genetic drift may have played a significant role in the more fine scale divergence among isolated freshwater populations. These results are concurrent with the patterns that have emerged in the published studies comparing the relative importance of natural selection and genetic drift as explanations for population divergence in different traits and taxa. I have also shown that body shape and armour divergence among threespine stickleback populations is likely to be biased by the patterns of genetic variation and covariation. Body shape and armour variation along the most likely direction of evolution the direction of maximum genetic variance reflects the general patterns of variation observed wild populations across the distribution range of the threespine stickleback. Conversely, it appears that genetic correlations between the sexes have not imposed significant constraints on the evolution of sexual dimorphism in threespine stickleback body shape and armour. I have demonstrated that the patterns of evolution seen in the wild can be experimentally recreated to tease out the effects of different selection agents in detail. In addition, I have shown how important it is to take into account the correlative nature of traits, when making interpretations about the effects of natural selection on individual traits. Overall, this thesis provides a demonstration of how considering the relative roles of different mechanism of evolutionary change at different levels of organisation can aid in an emergence of a comprehensive picture of how adaptive divergence in wild populations occurs.
Resumo:
Aims of this thesis This study is part of a larger hare project in Finland, which provides answers to basic ecological questions regarding the mountain hare. This study of the ecology of the mountain hare focuses in particular on different levels of managed boreal forest. The feeding habits and intensity of mountain hares in winter are explored, and the connections between mountain hares versus the forest structure are also studied (e.g. habitat use and the importance of different forest layers for hares). The use of the environment by hares at the landscape level was examined (forest patch structures), and the home ranges of mountain hares were studied. Finally, the productivity and survival rate of mountain hare populations were also studied (discussion e.g. predator effects on hare populations). Conclusions Feeding intensity seemed to be highest in the spring-winter, when home ranges were also largest. Favourable food species are covered by snow in winter and the mobility of hares is highest during late winter. A shortage of suitable food species may be problematic for hares, especially during the winter period. In this study mountain hares preferred a dense shrub layer at local level and deciduous and mixed tree forest over coniferous forest at the landscape level. Food and shelter are vital for hares and the preference for particular habitats may also affect the population dynamics of the mountain hare. It would be possible to improve the quality of food and shelter or at least prevent the most negative habitat changes through forest management. At a local level it is also possible to add supplementary food for hares through the winter period. The intensive clearing of young sapling stands and especially the removal of deciduous shrubs and trees reduces the quality of habitats for the mountain hare. Mountain hares primarily live in forest habitat and it is possible that changes in the forest structure play a crucial role in mountain hare habitat preference. Ecological knowledge of the mountain hare is vital to create habitat structure more suitable for the species. More deciduous trees should be saved in managing forests and the mechanical clearing of the shrub layer should be done carefully.
Resumo:
Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects. This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance. High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions. The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling. In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.
Resumo:
Herbivorous insects comprise a major part of terrestrial biodiversity, and their interactions with their host plants and natural enemies are of vast ecological importance. A large body of research demonstrates that the ecology and evolution of these insects may be affected by trophic interactions, by abiotic influences, and by intraspecific processes, but so far research on these individual aspects has rarely been combined. This thesis uses the leaf-mining moth Tischeria ekebladella and the pedunculate oak (Quercus robur) as a case study to assess how spatial variation in trophic interactions and the physical distribution of host trees jointly affect the distribution, dynamics and evolution of a host-specific herbivore. With respect to habitat quality, Tischeria ekebladella experiences abundant variation at several spatial scales. Most of this variation occurs at small scales notably among leaves and shoots within individual trees. While hypothetically this could cause moths to evolve an ability to select leaves and shoots of high quality, I did not find any coupling between female preference and offspring performance. Based on my studies on temporal variation in resource quality I therefore propose that unpredictable temporal changes in the relative rankings of individual resource units may render it difficult for females to predict the fate of their developing offspring. With respect to intraspecific processes, my results suggest that limited moth dispersal in relation to the spatial distribution of oak trees plays a key role in determining the regional distribution of Tischeria ekebladella. The distribution of the moth is aggregated at the landscape level, where local leaf miner populations are less likely to be present where oaks are scarce. A modelling exercise based on empirical dispersal estimates revealed that the moth population on Wattkast an island in south-western Finland is spatially structured overall, but that the relative importance of local and regional processes on tree-specific moth dynamics varies drastically across the landscape. To conclude, my work in the oak-Tischeria ekebladella system demonstrates that the local abundance and regional distribution of a herbivore may be more strongly influenced by the spatial location of host trees than by their relative quality. Hence, it reveals the importance of considering spatial context in the study of herbivorous insects, and forms a bridge between the classical fields of plant-insect interactions and spatial ecology.
Resumo:
One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.
Resumo:
F4 fimbriae of enterotoxigenic Escherichia coli (ETEC) are highly stable multimeric structures with a capacity to evoke mucosal immune responses. With these characters F4 offer a unique model system to study oral vaccination against ETEC-induced porcine postweaning diarrhea. Postweaning diarrhea is a major problem in piggeries worldwide and results in significant economic losses. No vaccine is currently available to protect weaned piglets against ETEC infections. Transgenic plants provide an economically feasible platform for large-scale production of vaccine antigens for animal health. In this study, the capacity of transgenic plants to produce FaeG protein, the major structural subunit and adhesin of F4 fimbria, was evaluated. Using the model plant tobacco, the optimal subcellular location for FaeG accumulation was examined. Targeting of FaeG into chloroplasts offered a superior accumulation level of 1% of total soluble proteins (TSP) over the other investigated subcellular locations, namely, the endoplasmic reticulum and the apoplast. Moreover, we determined whether the FaeG protein, when isolated from its fimbrial background and produced in a plant cell, would retain the key properties of an oral vaccine, i.e. stability in gastrointestinal conditions, binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. The chloroplast-derived FaeG protein did show resistance against low pH and proteolysis in the simulated gastrointestinal conditions and was able to bind to the F4R, subsequently inhibiting the F4+ ETEC binding in a dose-dependent manner. To investigate the oral immunogenicity of FaeG protein, the edible crop plant alfalfa was transformed with the chloroplast-targeting construct and equally to tobacco plants, a high-yield FaeG accumulation of 1% of TSP was obtained. A similar yield was also obtained in the seeds of barley, a valuable crop plant, when the FaeG-encoding gene was expressed under an endosperm-specific promoter and subcellularly targeted into the endoplasmic reticulum. Furthermore, desiccated alfalfa plants and barley grains were shown to have a capacity to store FaeG protein in a stable form for years. When the transgenic alfalfa plants were administred orally to weaned piglets, slight F4-specific systemic and mucosal immune responses were induced. Co-administration of the transgenic alfalfa and the mucosal adjuvant cholera toxin enhanced the F4-specific immune response; the duration and number of F4+ E. coli excretion following F4+ ETEC challenge were significantly reduced as compared with pigs that had received nontransgenic plant material. In conclusion, the results suggest that transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against porcine F4+ ETEC infections. The findings here thus present new approaches to develop the vaccination strategy against porcine postweaning diarrhea.
Resumo:
One of the main aims of evolutionary biology is to explain why organisms vary phenotypically as they do. Proximately, this variation arises from genetic differences and from environmental influences, the latter of which is referred to as phenotypic plasticity. Phenotypic plasticity is thus a central concept in evolutionary biology, and understanding its relative importance in causing the phenotypic variation and differentiation is important, for instance in anticipating the consequences of human induced environmental changes. The aim of this thesis was to study geographic variation and local adaptation, as well as sex ratios and environmental sex reversal, in the common frog (Rana temporaria). These themes cover three different aspects of phenotypic plasticity, which emerges as the central concept for the thesis. The first two chapters address geographic variation and local adaptation in two potentially thermally adaptive traits, namely the degree of melanism and the relative leg length. The results show that although there is an increasing latitudinal trend in the degree of melanism in wild populations across Scandinavian Peninsula, this cline has no direct genetic basis and is thus environmentally induced. The second chapter demonstrates that although there is no linear, latitudinally ordered phenotypic trend in relative leg length that would be expected under Allen s rule an ecogeographical rule linking extremity length to climatic conditions there seems to be such a trend at the genetic level, hidden under environmental effects. The first two chapters thus view phenotypic plasticity through its ecological role and evolution, and demonstrate that it can both give rise to phenotypic variation and hide evolutionary patterns in studies that focus solely on phenotypes. The last three chapters relate to phenotypic plasticity through its ecological and evolutionary role in sex determination, and consequent effects on population sex ratio, genetic recombination and the evolution of sex chromosomes. The results show that while sex ratios are strongly female biased and there is evidence of environmental sex reversals, these reversals are unlikely to have caused the sex ratio skew, at least directly. The results demonstrate that environmental sex reversal can have an effect on the evolution of sex chromosomes, as the recombination patterns between them seem to be controlled by phenotypic, rather than genetic, sex. This potentially allows Y chromosomes to recombine, lending support for the recent hypothesis suggesting that sex-reversal may play an important role on the rejuvenation of Y chromosomes.
Resumo:
Biological invasions are considered as one of the greatest threats to biodiversity, as they may lead to disruption and homogenization of natural communities, and in the worst case, to native species extinctions. The introduction of gene modified organisms (GMOs) to agricultural, fisheries and forestry practices brings them into contact with natural populations. GMOs may appear as new invasive species if they are able to (1) invade into natural habitats or (2) hybridize with their wild relatives. The benefits of GMOs, such as increased yield or decreased use of insecticides or herbicides in cultivation, may thus be reduced due the potential risks they may cause. A careful ecological risk analysis therefore has to precede any responsible GMO introduction. In this thesis I study ecological invasion in relation to GMOs, and what kind of consequences invasion may have in natural populations. A set of theoretical models that combine life-history evolution, population dynamics, and population genetics were developed for the hazard identification part of ecological risks assessment of GMOs. In addition, the potential benefits of GMOs in management of an invasive pest were analyzed. In the first study I showed that a population that is fluctuating due to scramble-type density dependence (due to, e.g., nutrient competition in plants) may be invaded by a population that is relatively more limited by a resource (e.g., light in plants) that is a cause of contest-type density dependence. This result emphasises the higher risk of invasion in unstable environments. The next two studies focused on escape of a growth hormone (GH) transgenic fish into a natural population. The results showed that previous models may have given too pessimistic a view of the so called Trojan gene -effect, where the invading genotype is harmful for the population as a whole. The previously suggested population extinctions did not occur in my studies, since the changes in mating preferences caused by the GH-fish were be ameliorated by decreased level of competition. The GH-invaders may also have to exceed a threshold density before invasion can be successful. I also showed that the prevalence of mature parr (aka. sneaker) strategy among GH-fish may have clear effect on invasion outcome. The fourth study assessed the risks and developed methods against the invasion of the Colorado Potato Beetle (CPB, Leptinotarsa decemlineata). I showed that the eradication of CPB is most important for the prevention of their establishment, but the cultivation of transgenic Bt-potato could also be effective. In general, my results emphasise that invasion of transgenic species or genotypes to be possible under certain realistic conditions and resulting in competitive exclusion, population decline through outbreeding depression and genotypic displacement of native species. Ecological risk assessment should regard the decline and displacement of the wild genotype by an introduced one as a consequence that is as serious as the population extinction. It will also be crucial to take into account different kinds of behavioural differences among species when assessing the possible hazards that GMOs may cause if escaped. The benefits found of GMO crops effectiveness in pest management may also be too optimistic since CPB may evolve resistance to Bt-toxin. The models in this thesis could be further applied in case specific risk assessment of GMOs by supplementing them with detailed data of the species biology, the effect of the transgene introduced to the species, and also the characteristics of the populations or the environments in the risk of being invaded.