39 resultados para urine specific gravity
Resumo:
The primary aim of this thesis was the evaluation of the perfusion of normal organs in cats using contrast-enhanced ultrasound (CEUS), to serve as a reference for later clinical studies. Little is known of the use of CEUS in cats, especially regarding its safety and the effects of anesthesia on the procedure, thus, secondary aims here were to validate the quantitative analyzing method, to investigate the biological effects of CEUS on feline kidneys, and to assess the effect of anesthesia on splenic perfusion in cats undergoing CEUS. -- The studies were conducted on healthy, young, purpose-bred cats. CEUS of the liver, left kidney, spleen, pancreas, small intestine, and mesenteric lymph nodes was performed to characterize the normal perfusion of these organs on ten anesthetized, male cats. To validate the quantification method, the effects of placement and size of the region of interest (ROI) on perfusion parameters were investigated using CEUS: Three separate sets of ROIs were placed in the kidney cortex, varying in location, size, or depth. The biological effects of CEUS on feline kidneys were estimated by measuring urinary enzymatic activities, analyzing urinary specific gravity, pH, protein, creatinine, albumin, and sediment, and measuring plasma urea and creatinine concentrations before and after CEUS. Finally, the impact of anesthesia on contrast enhancement of the spleen was investigated by imaging cats with CEUS first awake and later under anesthesia on separate days. -- Typical perfusion patterns were found for each of the studied organs. The liver had a gradual and more heterogeneous perfusion pattern due to its dual blood flow and close proximity to the diaphragm. An obvious and statistically significant difference emerged in the perfusion between the kidney cortex and medulla. Enhancement in the spleen was very heterogeneous at the beginning of imaging, indicating focal dissimilarities in perfusion. No significant differences emerged in the perfusion parameters between the pancreas, small intestine, and mesenteric lymph nodes. -- The ROI placement and size were found to have an influence on the quantitative measurements of CEUS. Increasing the depth or the size of the ROI decreased the peak intensity value significantly, suggesting that where and how the ROI is placed does matter in quantitative analyses. --- A significant increase occurred in the urinary N-acetyl-β-D-glucosaminidase (NAG) to creatinine ratio after CEUS. No changes were noted in the serum biochemistry profile after CEUS, with the exception of a small decrease in blood urea concentration. The magnitude of the rise in the NAG/creatinine ratio was, however, less than the circadian variation reported earlier in healthy cats. Thus, the changes observed in the laboratory values after CEUS of the left kidney did not indicate any detrimental effects in kidneys. Heterogeneity of the spleen was observed to be less and time of first contrast appearance earlier in nonanesthetized cats than in anesthetized ones, suggesting that anesthesia increases heterogeneity of the feline spleen in CEUS. ---- In conclusion, the results suggest that CEUS can be used also in feline veterinary patients as an additional diagnostics aid. The perfusion patterns found in the imaged organs were typical and similar to those seen earlier in other species, with the exception of the heterogeneous perfusion pattern in the cat spleen. Differences in the perfusion between organs corresponded with physiology. Based on the results, estimation of focal perfusion defects of the spleen in cats should be performed with caution and after the disappearance of the initial heterogeneity, especially in anesthetized or sedated cats. Finally, these results indicate that CEUS can be used safely to analyze kidney perfusion also in cats. Future clinical studies are needed to evaluate the full potential of CEUS in feline medicine as a tool for diagnosing lesions in various organ systems.
Resumo:
Determination of testosterone and related compounds in body fluids is of utmost importance in doping control and the diagnosis of many diseases. Capillary electromigration techniques are a relatively new approach for steroid research. Owing to their electrical neutrality, however, separation of steroids by capillary electromigration techniques requires the use of charged electrolyte additives that interact with the steroids either specifically or non-specifically. The analysis of testosterone and related steroids by non-specific micellar electrokinetic chromatography (MEKC) was investigated in this study. The partial filling (PF) technique was employed, being suitable for detection by both ultraviolet spectrophotometry (UV) and electrospray ionization mass spectrometry (ESI-MS). Efficient, quantitative PF-MEKC UV methods for steroid standards were developed through the use of optimized pseudostationary phases comprising surfactants and cyclodextrins. PF-MEKC UV proved to be a more sensitive, efficient and repeatable method for the steroids than PF-MEKC ESI-MS. It was discovered that in PF-MEKC analyses of electrically neutral steroids, ESI-MS interfacing sets significant limitations not only on the chemistry affecting the ionization and detection processes, but also on the separation. The new PF-MEKC UV method was successfully employed in the determination of testosterone in male urine samples after microscale immunoaffinity solid-phase extraction (IA-SPE). The IA-SPE method, relying on specific interactions between testosterone and a recombinant anti-testosterone Fab fragment, is the first such method described for testosterone. Finally, new data for interactions between steroids and human and bovine serum albumins were obtained through the use of affinity capillary electrophoresis. A new algorithm for the calculation of association constants between proteins and neutral ligands is introduced.
Resumo:
The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.
Resumo:
Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.
Resumo:
Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.
Resumo:
Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit
Resumo:
Socio-economic and demographic changes among family forest owners and demands for versatile forestry decision aid motivated this study, which sought grounds for owner-driven forest planning. Finnish family forest owners’ forest-related decision making was analyzed in two interview-based qualitative studies, the main findings of which were surveyed quantitatively. Thereafter, a scheme for adaptively mixing methods in individually tailored decision support processes was constructed. The first study assessed owners’ decision-making strategies by examining varying levels of the sharing of decision-making power and the desire to learn. Five decision-making modes – trusting, learning, managing, pondering, and decisive – were discerned and discussed against conformable decision-aid approaches. The second study conceptualized smooth communication and assessed emotional, practical, and institutional boosters of and barriers to such smoothness in communicative decision support. The results emphasize the roles of trust, comprehension, and contextual services in owners’ communicative decision making. In the third study, a questionnaire tool to measure owners’ attitudes towards communicative planning was constructed by using trusting, learning, and decisive dimensions. Through a multivariate analysis of survey data, three owner groups were identified as fusions of the original decision-making modes: trusting learners (53%), decisive learners (27%), and decisive managers (20%). Differently weighted communicative services are recommended for these compound wishes. The findings of the studies above were synthesized in a form of adaptive decision analysis (ADA), which allows and encourages the decision-maker (owner) to make deliberate choices concerning the phases of a decision aid (planning) process. The ADA model relies on adaptability and feedback management, which foster smooth communication with the owner and (inter-)organizational learning of the planning institution(s). The summarized results indicate that recognizing the communication-related amenity values of family forest owners may be crucial in developing planning and extension services. It is therefore recommended that owners, root-level planners, consultation professionals, and pragmatic researchers collaboratively continue to seek stable change.
Resumo:
It has been known for decades that particles can cause adverse health effects as they are deposited within the respiratory system. Atmospheric aerosol particles influence climate by scattering solar radiation but aerosol particles act also as the nuclei around which cloud droplets form. The principal objectives of this thesis were to investigate the chemical composition and the sources of fine particles in different environments (traffic, urban background, remote) as well as during some specific air pollution situations. Quantifying the climate and health effects of atmospheric aerosols is not possible without detailed information of the aerosol chemical composition. Aerosol measurements were carried out at nine sites in six countries (Finland, Germany, Czech, Netherlands, Greece and Italy). Several different instruments were used in order to measure both the particulate matter (PM) mass and its chemical composition. In the off-line measurements the samples were collected first on a substrate or filter and gravimetric and chemical analysis were conducted in the laboratory. In the on-line measurements the sampling and analysis were either a combined procedure or performed successively within the same instrument. Results from the impactor samples were analyzed by the statistical methods. This thesis comprises also a work where a method for the determination carbonaceous matter size distribution by using a multistage impactor was developed. It was found that the chemistry of PM has usually strong spatial, temporal and size-dependent variability. In the Finnish sites most of the fine PM consisted of organic matter. However, in Greece sulfate dominated the fine PM and in Italy nitrate made the largest contribution to the fine PM. Regarding the size-dependent chemical composition, organic components were likely to be enriched in smaller particles than inorganic ions. Data analysis showed that organic carbon (OC) had four major sources in Helsinki. Secondary production was the major source in Helsinki during spring, summer and fall, whereas in winter biomass combustion dominated OC. The significant impact of biomass combustion on OC concentrations was also observed in the measurements performed in Central Europe. In this thesis aerosol samples were collected mainly by the conventional filter and impactor methods which suffered from the long integration time. However, by filter and impactor measurements chemical mass closure was achieved accurately, and a simple filter sampling was found to be useful in order to explain the sources of PM on the seasonal basis. The online instruments gave additional information related to the temporal variations of the sources and the atmospheric mixing conditions.
Resumo:
Growth is a fundamental aspect of life cycle of all organisms. Body size varies highly in most animal groups, such as mammals. Moreover, growth of a multicellular organism is not uniform enlargement of size, but different body parts and organs grow to their characteristic sizes at different times. Currently very little is known about the molecular mechanisms governing this organ-specific growth. The genome sequencing projects have provided complete genomic DNA sequences of several species over the past decade. The amount of genomic sequence information, including sequence variants within species, is constantly increasing. Based on the universal genetic code, we can make sense of this sequence information as far as it codes proteins. However, less is known about the molecular mechanisms that control expression of genes, and about the variations in gene expression that underlie many pathological states in humans. This is caused in part by lack of information about the second genetic code that consists of the binding specificities of transcription factors and the combinatorial code by which transcription factor binding sites are assembled to form tissue-specific and/or ligand-regulated enhancer elements. This thesis presents a high-throughput assay for identification of transcription factor binding specificities, which were then used to measure the DNA binding profiles of transcription factors involved in growth control. We developed ‘enhancer element locator’, a computational tool, which can be used to predict functional enhancer elements. A genome-wide prediction of human and mouse enhancer elements generated a large database of enhancer elements. This database can be used to identify target genes of signaling pathways, and to predict activated transcription factors based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c- and N-Myc genes, which has implications to organ specific growth control and tumor type specificity of oncogenes. Furthermore, we were able to locate a variation in a single nucleotide, which carries a susceptibility to colorectal cancer, to an enhancer element and propose a mechanism by which this SNP might be involved in generation of colorectal cancer.
Resumo:
The circulatory system consists of the blood and lymphatic vessels. While blood vessels transport oxygen, cells, and nutrients to tissues, the lymphatic vessels collect fluid, cells, and plasma proteins from tissues to return back to the blood circulation. Angiogenesis, the growth of new blood vessels from pre-existing ones, is an important process involved in several physiological conditions such as inflammation, wound healing, and embryonic development. Furthermore, angiogenesis is found in many pathological conditions such as atherosclerosis and the growth and differentiation of solid tumors. Many tumor types spread via lymphatic vessels to form lymph node metastasis. The elucidation of the molecular players coordinating development of the vascular system has provided an array of tools for further insight of the circulatory system. The discovery of the Vascular Endothelial Growth Factor (VEGF) family members and their tyrosine kinase receptors (VEGFRs) has facilitated the understanding of the vasculature in different physiological and pathological situations. The VEGFRs are expressed on endothelial cells and mediate the growth and maintenance of both the blood and lymphatic vasculatures. This study was undertaken to address the role of VEGFR-2 specific signaling in maturation of blood vessels during neoangiogenesis and in lymphangiogenesis. We also wanted to differentiate between VEGFR-2 and VEGFR-3 specific signaling in lymphangiogenesis. We found that specific VEGFR-2 stimulation alone by gene therapeutic methods is not sufficient for production of mature blood vessels. However, VEGFR-2 stimulation in combination with expression of platelet-derived growth factor D (PDGF-D), a recently identified member of the PDGF growth factor family, was capable of stabilizing these newly formed vessels. Signaling through VEGFR-3 is crucial during developmental lymphangiogenesis, but we showed that the lymphatic vasculature becomes independent of VEGFR-3 signaling after the postnatal period. We also found that VEGFR-2 specific stimulation cannot rescue the loss of lymphatic vessels when VEGFR-3 signaling is blocked and that VEGFR-2 specific signals promote lymphatic vessel enlargement, but are not involved in vessel sprouting to generate new lymphatic vessels in vivo, in contrast to the VEGFR-2 dependent sprouting observed in blood vessels. In addition, we compared the inhibitory effects of a small molecular tyrosine kinase inhibitor of VEGFR-2 vs. VEGFR-3 specific signaling in vitro and in vivo. Our results showed that the tyrosine kinase inhibitor could equally affect physiological and pathological processes dependent on VEGFR-2 and VEGFR-3 driven angiogenesis or lymphangiogenesis. These results provide new insights into the VEGFR specific pathways required for pre- and postnatal angiogenesis as well as lymphangiogenesis, which could provide important targets and therapies for treatment of diseases characterized by abnormal angiogenesis or lymphangiogenesis.