17 resultados para spinal cord
Resumo:
Cavernomas are rare neurovascular lesions, encountered in up to 10% of patients harboring vascular abnormalities of the CNS. Cavernomas consist of dilated thin-walled sinusoids or caverns covered by a single layer of endothelium. Due to advancements in neuroradiology, the number of cavernoma patients coming to be evaluated in neurosurgical practice is increasing. In the present work, we summarized our results on the treatment of cavernomas. Particular attention was paid to uncommon locations or insufficiently investigated cavernomas, including 1. Intraventricular cavernomas; 2. Multiple cavernomas; 3. Spinal cavernomas; and 4. Temporal lobe cavernomas. After analyzing the patient series with these lesions, we concluded that: 1. IVCs are characterized by a high tendency to cause repetitive hemorrhages in a short period of time after the first event. In most patients, hemorrhages were not life-threatening. Surgery is indicated when re-bleedings are frequent and the mass-effect causes progressive neurological deterioration. Modern microsurgical techniques allow safe removal of the IVC, but surgery on fourth ventricle cavernomas carries increased risk of postoperative cranial nerve deficits. 2. In MC cases, when the cavernoma bleeds or generates drug-resistant epilepsy, microsurgical removal of the symptomatic lesion is beneficial to patients. In our series, surgical removal of the most active cavernoma usually the biggest lesion with signs of recent hemorrhage - was safe and prevented further bleedings. Epilepsy outcome showed the effectiveness of active treatment of MCs. However, due to the remaining cavernomas, epileptogenic activity can persist postoperatively, frequently necessitating long-term use of antiepileptic drugs. 3. Spinal cavernomas can cause severe neurological deterioration due to low tolerance of the spinal cord to mass-effect with progressive myelopathy. When aggravated by extralesional massive hemorrhage, neurological decline is usually acute and requires immediate treatment. Microsurgical removal of a cavernoma is effective and safe, improving neurological deficits. Sensorimotor deficits and pain improved postoperatively at a high rate, whereas bladder dysfunction remained essentially unchanged, causing social discomfort to patients. 4. Microsurgical removal of temporal lobe cavernomas is beneficial for patents suffering from drug-resistant epilepsy. In our series, 69% of patients with this condition became seizure-free postoperatively. Duration of epilepsy did not correlate with seizure prognosis. The most frequent disabling symptom at follow-up was memory disorder, considered to be the result of a complex interplay between chronic epilepsy and possible damage to the temporal lobe during surgery.
Resumo:
The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.
Resumo:
Populations in developed countries are ageing fast. The elderly have the greatest incidence of de-mentia, and thus the increase in the number of demented individuals, increases the immediate costs for the governments concerning healthcare and hospital treatment. Attention is being paid to disorders behind cognitive impairment with behavioural and psychological symptoms, which are enormous contributors to the hospital care required for the elderly. The highest dreams are in prevention; however, before discovering the tools for preventing dementia, the pathogenesis behind dementia disorders needs to be understood. Dementia with Lewy bodies (DLB), a relatively recently discovered dementia disorder compared to Alzheimer’s disease (AD), is estimated to account for up to one third of primary degenerative dementia, thus being the second most common cause of dementia in the elderly. Nevertheless, the impact of neuropathological and genetic findings on the clinical syndrome of DLB is not fully established. In this present series of studies, the frequency of neuropathological findings of DLB and its relation to the clinical findings was evaluated in a cohort of subjects with primary degenerative dementia and in a population-based prospective cohort study of individuals aged 85 years or older. α-synuclein (αS) immunoreactive pathology classifiable according to the DLB consensus criteria was found in one fourth of the primary degenerative dementia subjects. In the population-based study, the corresponding figure was one third of the population, 38% of the demented and one fifth of the non-demented very elderly Finns. However, in spite of the frequent discovery of αS pathology, its association with the clinical symptoms was quite poor. Indeed, the common clinical features of DLB, hypokinesia and visual hallucinations, associated better with the severe neurofibrillary AD-type pathology than with the extensive (diffuse neocortical) αS pathology when both types of pathology were taken into account. The severity of the neurofibrillary AD-type pathology (Braak stage) associated with the extent of αS pathology in the brain. In addition, the genetic study showed an interaction between tau and αS; common variation in the αS gene (SNCA) associated significantly with the severity of the neurofibrillary AD-type pathology and nominally significantly with the extensive αS pathology. Further, the relevance and temporal course of the substantia nigra (SN) degeneration and of the spinal cord αS pathology were studied in relation to αS pathology in the brain. The linear association between the extent of αS pathology in the brain and the neuron loss in SN suggests that in DLB the degeneration of SN proceeds as the αS pathology extends from SN to the neocortex instead of early destruction of SN seen in Parkinson’s disease (PD). Furthermore, the extent of αS pathology in the brain associated with the severity of αS pathology in the thoracic and sacral autonomic nuclei of the spinal cord. The thoracic αS pathology was more common and more severe compared to sacral cord, suggesting that the progress of αS pathology proceeds downwards from the brainstem towards the sacral spinal cord.
Resumo:
Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.
Resumo:
Gamma-aminobutyric acid (GABA) acting through ionotropic GABAA receptors plays a crucial role in the activity of the central nervous system (CNS). It triggers Ca2+ rise providing trophic support in developing neurons and conducts fast inhibitory function in mature neuronal networks. There is a developmental change in the GABAA reversal potential towards more negative levels during the first two postnatal weeks in rodent hippocampus. This change provides the basis for mature GABAergic activity and is attributable to the developmental expression of the neuron-specific potassium chloride cotransporter 2 (KCC2). In this work we have studied the mechanisms responsible for the control of KCC2 developmental expression. As a model system we used hippocampal dissociated cultures plated from embryonic day (E) 17 mice embryos before the onset of KCC2 expression. We showed that KCC2 was significantly up-regulated during the first two weeks of culture development. Interestingly, the level of KCC2 upregulation was not altered by chronic pharmacological blockage of action potentials as well as GABAergic and glutamatergic synaptic transmission. By in silico analysis of the proximal KCC2 promoter region we identified 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. One of these transcription factors, namely early growth response factor 4 (Egr4), had similar developmental profile as KCC2 and considerably increased the activity of mouse KCC2 gene in neuronal cells. Next we investigated the involvement of neurotrophic factors in regulation of Egr4 and KCC2 expression. We found that in immature hippocampal cultures Egr4 and KCC2 levels were strongly up-regulated by brain derived neurotrophic factor (BDNF)and neurturin. The effect of neurotrophic factors was dependent on the activation of a mitogen activated protein kinase (MAPK) signal transduction pathway. Intact Egr4-binding site in proximal KCC2 promoter was required for BDNF-induced KCC2 transcription. In vitro data were confirmed by several in vivo experiments where we detected an upregulation of KCC2 protein levels after intrahippocampal administration of BDNF or neurturin. Importantly, a MAPK-dependent rise in Egr4 and KCC2 expression levels was also observed after a period of kainic acid-induced seizure activity in neonatal rats suggesting that neuronal activity might be involved in Egr4-mediated regulation of KCC2 expression. Finally we demonstrated that the mammalian KCC2 gene (alias Slc12a5) generated two neuron-specific isoforms by using alternative promoters and first exons. A novel isoform of KCC2, termed KCC2a, differed from the previously known KCC2b isoform by 40 unique N-terminal amino acid residues. KCC2a expression was restricted to CNS,remained relatively constant during postnatal development, and contributed 20 50% of total KCC2 mRNA expression in the neonatal mouse brainstem and spinal cord. In summary, our data provide insight into the complex regulation of KCC2 expression during early postnatal development. Although basal KCC2 expression seems to be intrinsically regulated, it can be further augmented by neurotrophic factors or by enhanced activity triggering MAPK phosphorylation and Egr4 induction. Additional KCC2a isoform, regulated by another promoter, provides basal KCC2 level in neonatal brainstem and spinal cord required for survival of KCC2b knockout mice.
Resumo:
Within the last 15 years, several new leukoencephalopathies have been recognized. However, more than half of children with cerebral white matter abnormalities still have no specific diagnosis. Our aim was to classify unknown leukoencephalopathies and to identify new diseases among them. During the study, three subgroups of patients were delineated and examined further. First, we evaluated 38 patients with unknown leukoencephalopathy. Brain MRI findings were grouped into seven categories according to the predominant location of the abnormalities. The largest subgroups were myelination abnormalities (n=20) and periventricular white matter abnormalities (n=12). Six patients had uniform MRI findings with signal abnormalities in hemispheric white matter and in selective brain stem and spinal cord tracts. Magnetic resonance spectroscopy (MRS) showed elevated lactate and decreased N-acetylaspartate in the abnormal white matter. The patients presented with ataxia, tremor, distal spasticity, and signs of dorsal column dysfunction. This phenotype - leukoencephalopathy with brain stem and spinal cord involvement and elevated white matter lactate (LBSL) - was first published elsewhere in 2003. A new finding was development of a mild axonal neuropathy. The etiopathogenesis of this disease is unknown, but elevated white matter lactate in MRS suggests a mitochondrial disorder. Secondly, we studied 22 patients with 18q deletions. Clinical and MRI findings were correlated with molecularly defined size of the deletion. All patients with deletions between markers D18S469 and D18S1141 (n=18) had abnormal myelination in brain MRI, while four patients with interstitial deletions sparing that region, had normal myelination pattern. Haploinsufficiency of myelin basic protein is suggested to be responsible for this dysmyelination. Congenital aural atresia/stenosis was found in 50% of the cases and was associated with deletions between markers D18S812 (at 18q22.3) and D18S1141 (at q23). Last part of the study comprised 13 patients with leukoencephalopathy and extensive cerebral calcifications. They showed a spectrum of findings, including progressive cerebral cysts, retinal telangiectasias and angiomas, intrauterine growth retardation, skeletal and hematologic abnormalities, and severe intestinal bleeding, which overlap with features of the previously reported patients with "Coats plus" syndrome and "leukoencephalopathy with calcifications and cysts", suggesting that these disorders are related. All autopsied patients had similar neuropathologic findings showing calcifying obliterative microangiopathy. Our patients may represent an autosomally recessively inherited disorder because there were affected siblings and patients of both sexes. We have started genealogic and molecular genetic studies of this disorder.
Resumo:
Childhood-onset mitochondrial diseases comprise a heterogeneous group of disorders, which may manifest with almost any symptom and affect any tissue or organ. Due to challenging diagnostics, most children still lack a specific aetiological diagnosis. The aim of this thesis was to find molecular causes for childhood-onset mitochondrial disorders in Finland. We identified the underlying cause for 25 children, and found three new diseases, which had not been diagnosed in Finland before. These diseases caused severe progressive infantile-onset encephalomyopathies, and were due to defects in mitochondrial DNA (mtDNA) maintenance. Furthermore, the thesis provides the molecular background of Finnish patients with ‘leukoencephalopathy with brain stem and spinal cord involvement and elevated brain lactate’ (LBSL). A new phenotype was identified to be due to mutations in Twinkle, resembling ‘infantile onset spinocerebellar ataxia’ (IOSCA). These mutations caused mtDNA depletion in the liver, thus confirming the essential role of Twinkle in mtDNA maintenance, and expanding the molecular background of mtDNA depletion syndromes. The major aetiology for infantile mitochondrial myopathy in Finland was discovered to be due to mutations in thymidine kinase 2 (TK2). A novel mutation with Finnish ancestry was identified, and a genotype-phenotype correlation with mutation-specific distribution of tissue involvement was found, thus proving that deficient TK2 may cause multi-tissue depletion and impair neuronal function. This work established the molecular diagnosis and advanced the knowledge of phenotypes among paediatric patients with polymerase gamma (POLG) mutations. The patients showed severe early-onset encephalopathy with intractable epilepsy. POLG mutations are not a prevalent cause of children’s ataxias, although ataxia is a major presenting symptom among adults. Our findings indicate that POLG mutations should be investigated even if typical MRI, histochemical or biochemical abnormalities are lacking. LBSL patients showed considerable variation in phenotype despite identical mutations. A common, most likely European, ancestry, and a relative high carrier frequency of these mutations in Finland were discovered; suggesting that LBSL may be a quite common leukoencephalopathy in other populations as well. The results suggest that MRI findings are so unique that the diagnosis of LBSL is possible to make without genetic studies. This thesis work has resulted in identification of new mitochondrial disorders in Finland, enhancing the understanding of the clinical variability and the importance of tissue-specificity of these disorders. In addition to providing specific diagnosis to the patients, these findings give light to the underlying pathogenetic mechanisms of childhood-onset mitochondrial disorders.
Resumo:
Some leucine-rich repeat (LRR) -containing membrane proteins are known regulators of neuronal growth and synapse formation. In this work I characterize two gene families encoding neuronal LRR membrane proteins, namely the LRRTM (leucine-rich repeat, transmembrane neuronal) and NGR (Nogo-66 receptor) families. I studied LRRTM and NGR family member's mRNA tissue distribution by RT-PCR and by in situ hybridization. Subcellular localization of LRRTM1 protein was studied in neurons and in non-neuronal cells. I discovered that LRRTM and NGR family mRNAs are predominantly expressed in the nervous system, and that each gene possesses a specific expression pattern. I also established that LRRTM and NGR family mRNAs are expressed by neurons, and not by glial cells. Within neurons, LRRTM1 protein is not transported to the plasma membrane; rather it localizes to endoplasmic reticulum. Nogo-A (RTN4), MAG, and OMgp are myelin-associated proteins that bind to NgR1 to limit axonal regeneration after central nervous system injury. To better understand the functions of NgR2 and NgR3, and to explore the possible redundancy in the signaling of myelin inhibitors of neurite growth, I mapped the interactions between NgR family and the known and candidate NgR1 ligands. I identified high-affinity interactions between RTN2-66, RTN3-66 and NgR1. I also demonstrate that Rtn3 mRNA is expressed in the same glial cell population of mouse spinal cord white matter as Nogo-A mRNA, and thus it could have a role in myelin inhibition of axonal growth. To understand how NgR1 interacts with multiple structurally divergent ligands, I aimed first to map in more detail the nature of Nogo-A:NgR1 interactions, and then to systematically map the binding sites of multiple myelin ligands in NgR1 by using a library of NgR1 expression constructs encoding proteins with one or multiple surface residues mutated to alanine. My analysis of the Nogo-A:NgR1 -interactions revealed a novel interaction site between the proteins, suggesting a trivalent Nogo-A:NgR1-interaction. Our analysis also defined a central binding region on the concave side of NgR1's LRR domain that is required for the binding of all known ligands, and a surrounding region critical for binding MAG and OMgp. To better understand the biological role of LRRTMs, I generated Lrrtm1 and Lrrtm3 knock out mice. I show here that reporter genes expressed from the targeted loci can be used for maping the neuronal connections of Lrrtm1 and Lrrtm3 expressing neurons in finer detail. With regard to LRRTM1's role in humans, we found a strong association between a 70 kb-spanning haplotype in the proposed promoter region of LRRTM1 gene and two possibly related phenotypes: left-handedness and schizophrenia. Interestingly, the responsible haplotype was linked to phenotypic variability only when paternally inherited. In summary, I identified two families of neuronal receptor-like proteins, and mapped their expression and certain protein-protein interactions. The identification of a central binding region in NgR1 shared by multiple ligands may facilitate the design and development of small molecule therapeutics blocking binding of all NgR1 ligands. Additionally, the genetic association data suggests that allelic variation upstream of LRRTM1 may play a role in the development of left-right brain asymmetry in humans. Lrrtm1 and Lrrtm3 knock out mice developed as a part of this study will likely be useful for schizophrenia and Alzheimer s disease research.
Resumo:
Nisäkkäillä keskushermoston uudistuminen on rajallista. Keskushermostovamman jälkeen aktivoituu monien paranemista edistävien tekijöiden lisäksi myös estäviä tekijöitä. Monella molekyylillä, kuten laminiinilla, on keskushermoston paranemista tehostava vaikutus. Laminiinit ovat myös kehon tyvikalvojen oleellisia rakennuskomponentteja. Keskushermoston laminiinit ovat tärkeitä sikiökehityksen aikana, esimerkiksi hermosäikeiden ohjauksessa. Myöhemmin ne osallistuvat veriaivoesteen ylläpitoon sekä vammojen jälkeiseen kudosreaktioon. Väitöskirjatutkimuksessani olen selvittänyt lamiiniinien, erityisesti γ1 laminiinin ja sen KDI peptidin, ekspressiota keskushermoston vammatilanteissa. Kokeellisessa soluviljelmäasetelmassa, joka simuloi vammautunutta keskushermostoympäristöä, osoitimme että KDI peptidi voimistaa sekä hermosolujen selviytymistä että hermosäikeiden kasvua. Kainihappo on glutamaattianalogi, ja glutamaattitoksisuudella uskotaan olevan tärkeä merkitys keskushermoston eri vamma- ja sairaustilanteissa tapahtuvassa hermosolukuolemassa. Toisessa väitöskirjani osatyössä osoitimme eläinmallissa KDI peptidin suojaavan rotan aivojen hippokampuksen hermosoluja kainihapon aiheuttamalta solutuholta. Elektrofysiologisilla mittauksilla osoitimme kolmannessa osatyössäni, että KDI peptidi estää glutamaattireseptorivirtoja ja suojaa siten glutamaattitoksisuudelta. Aivoveritulpan aiheuttama aivovaurio on yleinen syy aivohalvaukseen. Viimeisessä osatyössäni tutkimme eläinmallissa laminiinien ekspressiota iskemian vaurioittamassa aivokudoksessa. Laminiiniekspression todettiin voimistuvan vaurion jälkeen sekä tyvikalvo- että soluväliainerakenteissa. Vaurion ympärillä havaittiin astrosyyttejä, jotka jo melko aikaisessa vaiheessa vamman jälkeen ekspressoivat γ1 laminiinia ja KDI peptidiä. Tästä voidaan päätellä laminiinien osallistuvan aivoiskeemisen vaurion patofysiologiaan. Yleisesti väitöskirjatyöni kartoitti laminiinien ekspressiota sekä terveessä että vammautuneessa keskushermostossa. Väitöskirjatyöni tukee hypoteesia, jonka mukaan KDI peptidi suojaa keskushermostoa vaurioilta.
Resumo:
Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.
Resumo:
This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.
Resumo:
Tämän tutkimuksen tarkoitus oli tutkia T-tyypin kalsiumkanavan toimintaa ja sen mahdollista roolia neuronaalisten kantasolujen migraatiossa. T-tyypin kalsiumkanavan tehtävän kehittyneissä aivoissa tiedetään olevan elektroenkefalografisten oskillaatioiden tuottaminen. Nämä taas ovat eräiden fysiologisten ja patofysiologisten tapahtumien säätelyssä avainasemassa. Tällaisia tapahtumia ovat uni, muisti, oppiminen ja epileptiset poissaolokohtaukset. Näiden lisäksi T-tyypin kalsiumkanavalla on myös periferaalisia vaikutuksia, mutta tämä tutkielma keskittyy sen neuronaalisiin toimintoihin. Tämän matalan jännitteen säätelemän kanavan toiminta neurogeneesin aikana on vähemmän tutkittua ja tunnettua kuin sen vaikutukset kehittyneissä aivoissa. T-tyypin kalsiumkanavan tiedetään edistävän kantasolujen proliferaatiota ja erilaistumista neurogeneesiksen aikana, mutta vaikutukset niiden migraatioon ovat vähemmän tunnetut. Tämä tutkimus näyttää T-tyypin kalsiumkanavan todennäköisesti osallistuvan neuronaaliseen migraatioon hiiren alkion subventrikkeli alueelta eristetyillä kanta- tai progeniittorisoluilla tehdyissä kokeissa. Selektiiviset T-tyypin kalsiumkanavan antagonistit, etosuksimidi, nikkeli ja skorpionitoksiini, kurtoxin hidastivat migraatiota erilaistuvissa progeniittorisoluissa. Tämä tutkimus koostuu kirjallisuuskatsauksesta ja kokeellisesta osasta. Tämän tutkimuksen toinen tarkoitus oli esitellä vaihtoehtoinen lähestymistapa invasiiviselle kantasoluterapialle, joka vaatii kantasolujen viljelyä ja siirtämistä ihmiseen. Tämä toinen tapa on endogeenisten kantasolujen eiinvasiivinen stimulointi, jolla ne saadaan migratoitumaan kohdekudokseen, erilaistumaan siellä ja tehtävänsä suoritettuaan lopettamaan jakaantumisen. Non-invasiivinen kantasoluterapia on vasta tiensä alussa, ja tarvitsee farmakologista osaamista kehittyäkseen. Joitain onnistuneita ei-invasiivisia hoitoja on jo tehty selkärangan vaurioiden korjaamisessa. Vastaavanlaisia menetelmiä voitaisiin käyttää myös keskushermoston vaurioiden ja neurodegeneratiivisten sairauksien hoidossa. Näiden menetelmien kehittäminen vaatii endogeenisten kantasoluja inhiboivien ja indusoivien mekanismien tuntemista. Yksi tärkeä kantasolujen erilaistumista stimuloiva tekijä on kalsiumioni. Jänniteherkät kalsiumkanavat osallistuvat kaikkiin neurogeneesiksen eri vaiheisiin. T-tyypin kalsiumkanava, joka ekspressoituu suuressa määrin keskushermoston kehityksen alkuvaiheessa ja vähenee neuronaalisen kehityksen edetessä, saattaa olla oleellisessa asemassa progeniittorisolujen ohjaamisessa.
Resumo:
Continuous epidural analgesia (CEA) and continuous spinal postoperative analgesia (CSPA) provided by a mixture of local anaesthetic and opioid are widely used for postoperative pain relief. E.g., with the introduction of so-called microcatheters, CSPA found its way particularly in orthopaedic surgery. These techniques, however, may be associated with dose-dependent side-effects as hypotension, weakness in the legs, and nausea and vomiting. At times, they may fail to offer sufficient analgesia, e.g., because of a misplaced catheter. The correct position of an epidural catheter might be confirmed by the supposedly easy and reliable epidural stimulation test (EST). The aims of this thesis were to determine a) whether the efficacy, tolerability, and reliability of CEA might be improved by adding the α2-adrenergic agonists adrenaline and clonidine to CEA, and by the repeated use of EST during CEA; and, b) the feasibility of CSPA given through a microcatheter after vascular surgery. Studies I IV were double-blinded, randomized, and controlled trials; Study V was of a diagnostic, prospective nature. Patients underwent arterial bypass surgery of the legs (I, n=50; IV, n=46), total knee arthroplasty (II, n=70; III, n=72), and abdominal surgery or thoracotomy (V, n=30). Postoperative lumbar CEA consisted of regular mixtures of ropivacaine and fentanyl either without or with adrenaline (2 µg/ml (I) and 4 µg/ml (II)) and clonidine (2 µg/ml (III)). CSPA (IV) was given through a microcatheter (28G) and contained either ropivacaine (max. 2 mg/h) or a mixture of ropivacaine (max. 1 mg/h) and morphine (max. 8 µg/h). Epidural catheter tip position (V) was evaluated both by EST at the moment of catheter placement and several times during CEA, and by epidurography as reference diagnostic test. CEA and CSPA were administered for 24 or 48 h. Study parameters included pain scores assessed with a visual analogue scale, requirements of rescue pain medication, vital signs, and side-effects. Adrenaline (I and II) had no beneficial influence as regards the efficacy or tolerability of CEA. The total amounts of epidurally-infused drugs were even increased in the adrenaline group in Study II (p=0.02, RM ANOVA). Clonidine (III) augmented pain relief with lowered amounts of epidurally infused drugs (p=0.01, RM ANOVA) and reduced need for rescue oxycodone given i.m. (p=0.027, MW-U; median difference 3 mg (95% CI 0 7 mg)). Clonidine did not contribute to sedation and its influence on haemodynamics was minimal. CSPA (IV) provided satisfactory pain relief with only limited blockade of the legs (no inter-group differences). EST (V) was often related to technical problems and difficulties of interpretation, e.g., it failed to identify the four patients whose catheters were outside the spinal canal already at the time of catheter placement. As adjuvants to lumbar CEA, clonidine only slightly improved pain relief, while adrenaline did not provide any benefit. The role of EST applied at the time of epidural catheter placement or repeatedly during CEA remains open. The microcatheter CSPA technique appeared effective and reliable, but needs to be compared to routine CEA after peripheral arterial bypass surgery.