18 resultados para ehrlich ascites tumor cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uveal melanoma (UM) is the second most common primary intraocular cancer worldwide. It is a relatively rare cancer, but still the second most common type of primary malignant melanoma in humans. UM is a slowly growing tumor, and gives rise to distant metastasis mainly to the liver via the bloodstream. About 40% of patients with UM die of metastatic disease within 10 years of diagnosis, irrespective of the type of treatment. During the last decade, two main lines of research have aimed to achieve enhanced understanding of the metastasis process and accurate prognosis of patients with UM. One emphasizes the characteristics of tumor cells, particularly their nucleoli, and markers of proliferation, and the other the characteristics of tumor blood vessels. Of several morphometric measurements, the mean diameter of the ten largest nucleoli (MLN) has become the most widely applied. A large MLN has consistently been associated with high likelihood of dying from UM. Blood vessels are of paramount importance in metastasis of UM. Different extravascular matrix patterns can be seen in UM, like loops and networks. This presence is associated with death from metastatic melanoma. However, the density of microvessels is also of prognostic importance. This study was undertaken to help understanding some histopathological factors which might contribute to developing metastasis in UM patients. Factors which could be related to tumor progression to metastasis disease, namely nucleolar size, MLN, microvascular density (MVD), cell proliferation, and The Insulin-like Growth Factor 1 Receptor(IGF-1R), were investigated. The primary aim of this thesis was to study the relationship between prognostic factors such as tumor cell nucleolar size, proliferation, extravascular matrix patterns, and dissemination of UM, and to assess to what extent there is a relationship to metastasis. The secondary goal was to develop a multivariate model which includes MLN and cell proliferation in addition to MVD, and which would fit better with population-based, melanoma-related survival data than previous models. I studied 167 patients with UM, who developed metastasis even after a very long time following removal of the eye, metastatic disease was the main cause of death, as documented in the Finnish Cancer Registry and on death certificates. Using an independent population-based data set, it was confirmed that MLN and extravascular matrix loops and networks were unrelated, independent predictors of survival in UM. Also, it has been found that multivariate models including MVD in addition to MLN fitted significantly better with survival data than models which excluded MVD. This supports the idea that both the characteristics of the blood vessels and the cells are important, and the future direction would be to look for the gene expression profile, whether it is associated more with MVD or MLN. The former relates to the host response to the tumor and may not be as tightly associated with the gene expression profile, yet most likely involved in the process of hematogenous metastasis. Because fresh tumor material is needed for reliable genetic analysis, such analysis could not be performed Although noninvasive detection of certain extravascular matrix patterns is now technically possible,in managing patients with UM, this study and tumor genetics suggest that such noninvasive methods will not fully capture the process of clinical metastasis. Progress in resection and biopsy techniques is likely in the near future to result in fresh material for the ophthalmic pathologist to correlate angiographic data, histopathological characteristics such as MLN, and genetic data. This study supported the theory that tumors containing epithelioid cells grow faster and have poorer prognosis when studied by cell proliferation in UM based on Ki-67 immunoreactivity. Cell proliferation index fitted best with the survival data when combined with MVD, MLN, and presence of epithelioid cells. Analogous with the finding that high MVD in primary UM is associated with shorter time to metastasis than low MVD, high MVD in hepatic metastasis tends to be associated with shorter survival after diagnosis of metastasis. Because the liver is the main organ for metastasis from UM, growth factors largely produced in the liver hepatocyte growth factor, epidermal growth factor and insulin-like growth factor-1 (IGF-1) together with their receptors may have a role in the homing and survival of metastatic cells. Therefore the association between immunoreactivity for IGF-1R in primary UM and metastatic death was studied. It was found that immunoreactivity for IGF-IR did not independently predict metastasis from primary UM in my series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder, which predisposes to multiple tumours of the nervous system, typically schwannomas and meningiomas. Biallelic inactivation of the NF2 gene occurs both in sporadic and NF2-related schwannomas and in most meningiomas. The NF2 gene product merlin (or schwannomin) is structurally related to the ERM proteins, ezrin, radixin and moesin, which act as molecular linkers between the actin cytoskeleton and the plasma membrane. Merlin is a tumor suppressor that participates in cell cycle regulation. Merlin s phosphorylation status appears to be associated with its tumour suppressor activity, i.e. non-phosphorylated merlin functions as a tumour suppressor, whereas protein phosphorylation results in loss of functional activity. This thesis study was initiated to investigate merlin s role as a tumor suppressor and growth inhibitor. These studies show, that like many other tumor suppressors, also merlin is targeted to the nucleus at some stages of the cell cycle. Merlin s nuclear localization is regulated by cell cycle phase, contact inhibition and adhesion. In addition, a potential nuclear binding partner for merlin was identified, Human Enhancer of Invasion 10 (HEI10), a cyclin B interacting protein. Many tumor suppressors interact with microtubules and this thesis work shows that also merlin colocalizes with microtubules in mitotic structures. Merlin binds microtubules directly, and increases their polymerization in vitro and in vivo. In addition, primary mouse Schwann cells lacking merlin displays disturbed microtubule cytoskeleton. Fourth part of this thesis work began from the notion that PKA phosphorylates an unidentified site from the merlin N-terminus. Our studies show that serine 10 is a target for PKA and modulation of this residue regulates cytoskeletal organization, lamellipodia formation and cell migration. In summary, this thesis work shows that merlin s role is much more versatile than previously thought. It has a yet unidentified role in the nucleus and it participates in the regulation of both microtubules and the actin cytoskeleton. These studies have led to a better understanding of this enigmatic tumor suppressor, which eventually will aid in the design of specific drugs for the NF2 disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ihon T-solulymfoomat (cutaneous T-cell lymphoma, CTCL) ovat ryhmä imukudossyöpiä, joiden esiintyvyys on nousussa erityisesti länsimaissa. Taudin syntymekanismit ovat suurelta osin tuntemattomat, diagnostiikka on vaikeaa ja siksi usein viivästynyttä eikä parantavaa hoitoa ole. CTCL ilmenee iho-oirein, vaikka syöpäsolut eivät ole iholla normaalisti esiintyviä soluja, vaan elimistön puolustusjärjestelmän soluja, jotka ovat tuntemattomasta syystä vaeltaneet iholle. Syöpäsolut ovat kypsiä T-auttajasoluja (Th-soluja) ja ilmentävät tyypin 2 immuunivasteelle ominaisia sytokiineja. Kromosomaalinen epästabiilius on tautiryhmän keskeinen piirre. CTCL-potilailla on lisääntynyt riski sairastua myös muihin syöpiin, erityisesti keuhkosyöpään ja non-Hodgkin –lymfoomiin. Väitöskirjatutkimuksen tavoitteena oli havaita CTCL:n syntymekanismeja selvittäviä kromosomi- ja geenimuutoksia. Erityisesti tavoitteena oli identifioida molekyylejä, jotka soveltuisivat diagnostisiksi merkkiaineiksi tai täsmähoidon kohteeksi. Työssä on tutkittu kahta tautiryhmän yleisintä muotoa, mycosis fungoidesta (MF) ja Sezaryn syndroomaa (SS) sekä harvinaisempaa vaikeasti diagnosoitavaa subkutaanista pannikuliitin kaltaista T-solulymfoomaa (SPTL). Lisäksi on tutkittu CTCL:ään liittyvää keuhkosyöpää ja verrattu sitä tavalliseen (primaariin) keuhkosyöpään. Tutkimusmenetelminä on käytetty esimerkiksi molekyylisytogeneettisiä metodeja ja mikrosiruja. Väitöskirjatyössä havaittiin ensimmäinen CTCL:lle ominainen toistuva geenitason muutos: puutos- tai katkoskohta NAV3-geenissä. Tämän geenipoikkeavuuden havaittiin esiintyvän useissa taudin alaryhmissä (MF, SS, SPTL). NAV3-geenipuutoksen osoittaminen FISH-tekniikalla on sovellettavissa kliiniseen diagnostiikkaan. Tutkimukset geenipuutoksen aiheuttamista toiminnallisista seurauksista ovat käynnissä. Työssä saatiin myös uutta tietoa taudin syntymekanismeista havaitsemalla useiden Th1-tyypin immuunivasteelle ominaisten geenien alentunut ilmeneminen CTCL-potilailla. Tämän lisäksi potilasnäytteissä havaittiin eräiden solun pinta-antigeenien lisääntynyt ilmeneminen, mikä luo pohjan uusien vasta-ainepohjaisten täsmähoitojen kehittämiselle. Väitöskirjatutkimuksessa todettiin myös CTCL:ään liittyvän keuhkosyövän eroavan kromosomi- ja geenimuutosten suhteen verrokkikeuhkosyövästä, mikä jatkossa antaa aiheen tutkia syöpäkantasolujen merkitystä CTCL:n ja sen liitännäiskasvainten kehittymisen taustalla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Merkel cell carcinoma (MCC) is a rare cutaneous malignancy that occurs predominantly on sun exposed skin areas. A new polyomavirus (MCPyV) was identified in MCC tumor tissues in 2008 suggesting that a viral infection might be an etiological factor. A typical MCC is a rapidly growing painless purple nodule. In its early stage it can be misjudged by its appearance as a cyst or abscess. Recurrences are common and approximately half of the patients will develop lymph node metastases and third of the patents will have distant metastases. It affects mostly elderly persons at an average age of 70 at the time of diagnosis. MCC was first described in 1972 and the first MCC patient in Finland was identified in 1983. MCC has been poorly recognized, but increased awareness and better diagnostic accuracy has increased the incidence since the early years. In this study, all cases with a notation of MCC during 1979 2008 were obtained from the Finnish Cancer Registry. Based on this data, the incidence is 0.11 for men and 0.12 for women. It is similar than that of other Nordic countries, but lower than in the USA. For clinical series, the files of patients diagnosed with MCC during 1983 2004 were reviewed, and the tissue samples were re-evaluated, if available (n=181). Third of the patients were men, and the most common site of the primary tumor was the head and neck (53%). The majority of the patients (86%) presented with a clinically node-negative (Stage I or II) disease, but the disease recurred in 38% of them. The treatment schemes were heterogeneous. No additional benefit from a wide margin (≥2 cm) was found compared to a margin of 0.1-1.9 cm, but intralesional excision was more often associated with local recurrence. None of the patients with Stage I-II disease who had received postoperative radiotherapy had local recurrence during the follow-up period. The 5-year relative survival ratio for Stage I disease was 68%, for Stage II 67%, for Stage III 16%, and for Stage IV 0%. The relative excess risk of death was significantly lower among women than among men. Some of these tissue samples were further analyzed for vascular invasion (n=126) by immunohistochemistry using vascular endothelial markers CD-31 and D2-40. Vascular invasion was seen in 93% of the samples and it was observed already in very small, <5mm tumors. The tissue samples were also analyzed for the presence of MCPyV by using a polymerase chain reaction (PCR) and quantitative PCR. MCPyV DNA was present in 80% of 114 samples studied. The patients with virus-positive tumors had better overall survival than patients with virus-negative tumors. Immunohistochemical analyses were performed for the expression of VEGFR-2 (n=21) and endostatin (n=19), but they had no prognostic value. Our results support the concept of treating MCC with margin-negative excision and radiotherapy to the tumor bed to reduce local recurrence. The finding of a high frequency of lymphovascular invasion reduces its value as a prognostic factor, but emphasizes the role of sentinel node biopsy even in very small primary MCC.