26 resultados para color signals environmental effects
Resumo:
During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
One of the main aims of evolutionary biology is to explain why organisms vary phenotypically as they do. Proximately, this variation arises from genetic differences and from environmental influences, the latter of which is referred to as phenotypic plasticity. Phenotypic plasticity is thus a central concept in evolutionary biology, and understanding its relative importance in causing the phenotypic variation and differentiation is important, for instance in anticipating the consequences of human induced environmental changes. The aim of this thesis was to study geographic variation and local adaptation, as well as sex ratios and environmental sex reversal, in the common frog (Rana temporaria). These themes cover three different aspects of phenotypic plasticity, which emerges as the central concept for the thesis. The first two chapters address geographic variation and local adaptation in two potentially thermally adaptive traits, namely the degree of melanism and the relative leg length. The results show that although there is an increasing latitudinal trend in the degree of melanism in wild populations across Scandinavian Peninsula, this cline has no direct genetic basis and is thus environmentally induced. The second chapter demonstrates that although there is no linear, latitudinally ordered phenotypic trend in relative leg length that would be expected under Allen s rule an ecogeographical rule linking extremity length to climatic conditions there seems to be such a trend at the genetic level, hidden under environmental effects. The first two chapters thus view phenotypic plasticity through its ecological role and evolution, and demonstrate that it can both give rise to phenotypic variation and hide evolutionary patterns in studies that focus solely on phenotypes. The last three chapters relate to phenotypic plasticity through its ecological and evolutionary role in sex determination, and consequent effects on population sex ratio, genetic recombination and the evolution of sex chromosomes. The results show that while sex ratios are strongly female biased and there is evidence of environmental sex reversals, these reversals are unlikely to have caused the sex ratio skew, at least directly. The results demonstrate that environmental sex reversal can have an effect on the evolution of sex chromosomes, as the recombination patterns between them seem to be controlled by phenotypic, rather than genetic, sex. This potentially allows Y chromosomes to recombine, lending support for the recent hypothesis suggesting that sex-reversal may play an important role on the rejuvenation of Y chromosomes.
Resumo:
In humans, well-replicated and robust sex differences in cognitive functions exist for handedness and mental rotation ability. A common characteristic in human cognitive functions is the lateralization of language functions. Handedness is a common measure of laterality and is related to language lateralization. The prevalence of left-handedness is higher in males than in females, the male to female ratio being about 1.2. Among cognitive abilities, the largest sex difference is evident in the Vandenberg and Kuse Mental Rotation Test (MRT), which requires the ability to rotate objects in mental space. On average, males achieve scores one standard deviation higher than females in the MRT. The present thesis investigated the origins of the sex differences in laterality and spatial ability as represented by handedness and mental rotation ability, respectively. Two population-based Finnish twin cohorts were utilized in this study. Handedness was studied in 25 810 twins and 4068 singletons born before 1958 from the Older Finnish Twin Cohort, and in 4736 twins born in 1983-87 from the FinnTwin12. MRT was studied in a sub-sample of 804 young adult participants from the FinnTwin12 sample. The main findings of this study were: 1) the prevalence of left-handedness was higher among males than among females in both singletons and in twins; 2) males had significantly higher scores than females in MRT; 3) about one quarter of the variance in handedness and about half of the variance in MRT was explained by genetic effects, whereas the remainder of the variance in these traits was explained by environmental effects unique to each individual. The magnitude of the genetic effects was similar in both sexes; 4) left-handedness was significantly less common in female co-twins of a male than in female co-twins of a female, and female co-twins of a male scored significantly higher than did female co-twins of a female in the Mental Rotation Test. This dissertation discusses whether these differences between females from opposite- and same-sex twin pairs are due to the prenatal transfer of testosterone from the male fetus in females with male co-twins or whether they arise from postnatal socialization effects.
Resumo:
Olfaction, the sense of smell, has many important functions in humans. Human responses to odors show substantial individual variation. Olfactory receptor genes have been identified and other genes may also influence olfaction. However, the proportion of phenotypic variation in odor response due to genetic variation remains largely unknown. Little is also known about which genes modify specific responses to odors. This study aimed to elucidate genetic and environmental influences on human responses to odors. Individuals from Finnish families (n=146) and Australian (n=413), British (n=163), Danish (n=336), and Finnish (n=399) twins rated intensity and pleasantness of a set of 12 (families) or 6 (twins) odors and tried to identify the odors. In addition, the participants rated their own sense of smell and annoyance experienced with different environmental odors. The odor stimuli of a commercial smell test (The Brief Smell Identification Test; banana, chocolate, cinnamon, gasoline, lemon, onion, paint thinner, pineapple, rose, smoke, soap, and turpentine) were presented in the family study. Based on the results of the family study and a literature survey, a new set of odor stimuli (androstenone, chocolate, cinnamon, isovaleric acid, lemon, and turpentine) was designed for the twin studies. In the family sample, heritabilities of the traits were estimated and underlying genomic regions were searched using a genome-wide linkage scan. In the pooled twin sample, variation in the measured traits was decomposed into genetic and environmental components using quantitative genetic modeling. In addition, associations between nongenetic factors (e.g., sex, age, and smoking) and olfactory-related traits were explored. Suggestive evidence for a genetic linkage for pleasantness of cinnamon at a locus on chromosome 4q32.3 emerged from the family sample. High heritability for the pleasantness of cinnamon was found in the family but not the twin study. Heritability of perceived intensity of androstenone odor was determined to be ~30% in the twin sample. A strong genetic correlation between perceived intensity and pleasantness of androstenone, in the absence of any environmental correlation, indicated that only the genetic correlation explained the phenotypic correlation between the traits (r=-0.27) and that the traits were influenced by an overlapping set of genes. Self-rated olfactory function appeared to reflect the odor annoyance experienced rather than actual olfactory acuity or genetic involvement. Results from nongenetic analyses supported the speculated superiority of females' olfactory abilities, the age-related diminishing of olfactory acuity, and the influences of experience-dependent factors on odor responses. This was the first study to estimate heritabilities and perform linkage screens for individual odors. A genetic effect was detected for only a few responses to specific odors, suggesting the predominance of environmental effects in odor perceptions.
Resumo:
Type 1 diabetes (T1D) is a common, multifactorial disease with strong familial clustering. In Finland, the incidence of T1D among children aged 14 years or under is the highest in the world. The increase in incidence has been approximately 2.4% per year. Although most new T1D cases are sporadic the first-degree relatives are at an increased risk of developing the same disease. This study was designed to examine the familial aggregation of T1D and one of its serious complications, diabetic nephropathy (DN). More specifically the study aimed (1) to determine the concordance rates of T1D in monozygotic (MZ) and dizygotic (DZ) twins and to estimate the relative contributions of genetic and environmental factors to the variability in liability to T1D as well as to study the age at onset of diabetes in twins; (2) to obtain long-term empirical estimates of the risk of T1D among siblings of T1D patients and the factors related to this risk, especially the effect of age at onset of diabetes in the proband and the birth cohort effect; (3) to establish if DN is aggregating in a Finnish population-based cohort of families with multiple cases of T1D, and to assess its magnitude and particularly to find out whether the risk of DN in siblings is varying according to the severity of DN in the proband and/or the age at onset of T1D: (4) to assess the recurrence risk of T1D in the offspring of a Finnish population-based cohort of patients with childhood onset T1D, and to investigate potential sex-related effects in the transmission of T1D from the diabetic parents to their offspring as well as to study whether there is a temporal trend in the incidence. The study population comprised of the Finnish Young Twin Cohort (22,650 twin pairs), a population-based cohort of patients with T1D diagnosed at the age of 17 years or earlier between 1965 and 1979 (n=5,144) and all their siblings (n=10,168) and offspring (n=5,291). A polygenic, multifactorial liability model was fitted to the twin data. Kaplan-Meier analyses were used to provide the cumulative incidence for the development of T1D and DN. Cox s proportional hazards models were fitted to the data. Poisson regression analysis was used to evaluate temporal trends in incidence. Standardized incidence ratios (SIRs) between the first-degree relatives of T1D patients and background population were determined. The twin study showed that the vast majority of affected MZ twin pairs remained discordant. Pairwise concordance for T1D was 27.3% in MZ and 3.8% in DZ twins. The probandwise concordance estimates were 42.9% and 7.4%, respectively. The model with additive genetic and individual environmental effects was the best-fitting liability model to T1D, with 88% of the phenotypic variance due to genetic factors. The second paper showed that the 50-year cumulative incidence of T1D in the siblings of diabetic probands was 6.9%. A young age at diagnosis in the probands considerably increased the risk. If the proband was diagnosed at the age of 0-4, 5-9, 10-14, 15 or more, the corresponding 40-year cumulative risks were 13.2%, 7.8%, 4.7% and 3.4%. The cumulative incidence increased with increasing birth year. However, SIR among children aged 14 years or under was approximately 12 throughout the follow-up. The third paper showed that diabetic siblings of the probands with nephropathy had a 2.3 times higher risk of DN compared with siblings of probands free of nephropathy. The presence of end stage renal disease (ESRD) in the proband increases the risk three-fold for diabetic siblings. Being diagnosed with diabetes during puberty (10-14) or a few years before (5-9) increased the susceptibility for DN in the siblings. The fourth paper revealed that of the offspring of male probands, 7.8% were affected by the age of 20 compared with 5.3% of the offspring of female probands. Offspring of fathers with T1D have 1.7 times greater risk to be affected with T1D than the offspring of mothers with T1D. The excess risk in the offspring of male fathers manifested itself through the higher risk the younger the father was when diagnosed with T1D. Young age at onset of diabetes in fathers increased the risk of T1D greatly in the offspring, but no such pattern was seen in the offspring of diabetic mothers. The SIR among offspring aged 14 years or under remained fairly constant throughout the follow-up, approximately 10. The present study has provided new knowledge on T1D recurrence risk in the first-degree relatives and the risk factors modifying the risk. Twin data demonstrated high genetic liability for T1D and increased heritability. The vast majority of affected MZ twin pairs, however, remain discordant for T1D. This study confirmed the drastic impact of the young age at onset of diabetes in the probands on the increased risk of T1D in the first-degree relatives. The only exception was the absence of this pattern in the offspring of T1D mothers. Both the sibling and the offspring recurrence risk studies revealed dynamic changes in the cumulative incidence of T1D in the first-degree relatives. SIRs among the first-degree relatives of T1D patients seems to remain fairly constant. The study demonstrates that the penetrance of the susceptibility genes for T1D may be low, although strongly influenced by the environmental factors. Presence of familial aggregation of DN was confirmed for the first time in a population-based study. Although the majority of the sibling pairs with T1D were discordant for DN, its presence in one sibling doubles and presence of ESRD triples the risk of DN in the other diabetic sibling. An encouraging observation was that although the proportion of children to be diagnosed with T1D at the age of 4 or under is increasing, they seem to have a decreased risk of DN or at least delayed onset.
Resumo:
The aims of this dissertation were 1) to investigate associations of weight status of adolescents with leisure activities, and computer and cell phone use, and 2) to investigate environmental and genetic influences on body mass index (BMI) during adolescence. Finnish twins born in 1983–1987 responded to postal questionnaires at the ages of 11-12 (5184 participants), 14 (4643 participants), and 17 years (4168 participants). Information was obtained on weight and height, leisure activities including television viewing, video viewing, computer games, listening to music, board games, musical instrument playing, reading, arts, crafts, socializing, clubs, sports, and outdoor activities, as well as computer and cell phone use. Activity patterns were studied using latent class analysis. The relationship between leisure activities and weight status was investigated using logistic and linear regression. Genetic and environmental effects on BMI were studied using twin modeling. Of individual leisure activities, sports were associated with decreased overweight risk among boys in both cross-sectional and longitudinal analyses, but among girls only cross-sectionally. Many sedentary leisure activities, such as video viewing (boys/girls), arts (boys), listening to music (boys), crafts (girls), and board games (girls), had positive associations with being overweight. Computer use was associated with a higher prevalence of overweight in cross-sectional analyses. However, musical instrument playing, commonly considered as a sedentary activity, was associated with a decreased overweight risk among boys. Four patterns of leisure activities were found: ‘Active and sociable’, ‘Active but less sociable’, ‘Passive but sociable’, and ‘Passive and solitary’. The prevalence of overweight was generally highest among the ‘Passive and solitary’ adolescents. Overall, leisure activity patterns did not predict overweight risk later in adolescence. An exception were 14-year-old ‘Passive and solitary’ girls who had the greatest risk of becoming overweight by 17 years of age. Heritability of BMI was high (0.58-0.83). Common environmental factors shared by family-members affected the BMI at 11-12 and 14 years but their effect had disappeared by 17 years of age. Additive genetic factors explained 90-96% of the BMI stability across adolescence. Genetic correlations across adolescence were high, which suggests similar genetic effects on BMI throughout adolescence, while unique environmental effects on BMI appeared to vary. These findings suggest that family-based interventions hold promise for obesity prevention into early and middle adolescence, but that later in adolescence obesity prevention should focus on individuals. A useful target could be adolescents' leisure time, and our findings highlight the importance of versatility in leisure activities.
Resumo:
Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.
Resumo:
Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.
Resumo:
The biodiversity of farmland ecosystems has decreased remarkably during the latter half of the 20th century, and this development is due to intensive farming with its various environmental effects. In the countries of the EU the Common Agricultural Policy (CAP) is the main determinant affecting farmland biodiversity, since the agricultural policy defines guidelines of agricultural practices. In addition to policies promoting intensive farming, CAP also includes national agri-environment schemes (AES), in which a part of subsidies paid to farmers is directed to acts that are presumed to promote environmental protection and biodiversity. In order to shape AES into relevant and powerful tools for biodiversity protection, detailed studies on the effects of agriculture on species and species assemblages are needed. In my thesis I investigated the importance of habitat heterogeneity and effects of different habitat and landscape characteristics on farmland bird abundance and diversity in typical cereal cultivation-dominated southern Finnish agricultural environments. The extensive data used were collected by territory mapping. My two main study species were the drastically declined ortolan bunting (Emberiza hortulana) and the phenomenally increased tree sparrow (Passer montanus); in addition I studied assemblages of 20 species breeding in open arable and edge/bush habitats. In light of my results I discuss whether the Finnish AES take into account the habitat needs of farmland birds, and I provide suggestions for improvement of the future AES. My results show that heterogeneity of both uncultivated and cultivated habitats increases abundance and species richness among farmland birds, but in this respect the amount and diversity of uncultivated habitats are essential. Ditches in particular are a keystone structure for farmland birds in boreal landscapes. Ditches lined by trees or bushes increased ortolan bunting abundance. Loss of that kind of ditches (and clearance of forest and bush patches), reduced breeding ortolan buntings, mainly by decreasing availability of song-posts that are important for the breeding groups of the species. Heterogeneity of uncultivated habitats, most importantly open ditches and the habitat patch richness, increased densities and species richnesses of species assemblages of open arable and edge/bush habitats. Human impact (winter-feeding, nest-boxes) affected favourably the tree sparrow s rapid range expansion in southern Finland, but any habitat types had no significant effects. At the moment the Finnish agri-environmental policy does not conserve farmland ditches as a habitat type. Instead, sub-surface drainage is financially promoted. This is a fatal mistake as far as farmland biodiversity is concerned. In addition to the maintenance of ditches, at least the following aspects should be included more than is done previously in the measures of the future AES: 1) promotion of diverse crop rotation (especially by promoting animal husbandry), 2) maintenance of tree and bush vegetation in islets and along ditches, 3) promotion of organic farming.
Resumo:
"Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter <= 10 mm (twigs) and FWD with diameter > 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved."
Resumo:
In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.
Resumo:
The aim of this thesis was to study the crops currently used for biofuel production from the following aspects: 1. what should be the average yield/ ha to reach an energy balance at least 0 or positive 2. what are the shares of the primary and secondary energy flows in agriculture, transport, processing and usage, and 3. overall effects of biofuel crop cultivation, transport, processing and usage. This thesis concentrated on oilseed rape biodiesel and wheat bioethanol in the European Union, comparing them with competing biofuels, such as corn and sugarcane-based ethanol, and the second generation biofuels. The study was executed by comparing Life Cycle Assessment-studies from the EU-region and by analyzing them thoroughly from the differences viewpoint. The variables were the following: energy ratio, hectare yield (l/ha), impact on greenhouse gas emissions (particularly CO2), energy consumption in crop growing and processing one hectare of a particular crop to biofuel, distribution of energy in processing and effects of the secondary energy flows, like e.g. wheat straw. Processing was found to be the most energy consuming part in the production of biofuels. So if the raw materials will remain the same, the development will happen in processing. First generation biodiesel requires esterification, which consumes approximately one third of the process energy. Around 75% of the energy consumed in manufacturing the first generation wheat-based ethanol is spent in steam and electricity generation. No breakthroughs are in sight in the agricultural sector to achieve significantly higher energy ratios. It was found out that even in ideal conditions the energy ratio of first generation wheat-based ethanol will remain slightly under 2. For oilseed rape-based biodiesel the energy ratios are better, and energy consumption per hectare is lower compared to wheat-based ethanol. But both of these are lower compared to e.g. sugarcane-based ethanol. Also the hectare yield of wheat-based ethanol is significantly lower. Biofuels are in a key position when considering the future of the world’s transport sector. Uncertainties concerning biofuels are, however, several, like the schedule of large scale introduction to consumer markets, technologies used, raw materials and their availability and - maybe the biggest - the real production capacity in relation to the fuel consumption. First generation biofuels have not been the expected answer to environmental problems. Comparisons made show that sugarcane-based ethanol is the most prominent first generation biofuel at the moment, both from energy and environment point of view. Also palmoil-based biodiesel looks promising, although it involves environmental concerns as well. From this point of view the biofuels in this study - wheat-based ethanol and oilseed rape-based biodiesel - are not very competitive options. On the other hand, crops currently used for fuel production in different countries are selected based on several factors, not only based on thier relative general superiority. It is challenging to make long-term forecasts for the biofuel sector, but it can be said that satisfying the world's current and near future traffic fuel consumption with biofuels can only be regarded impossible. This does not mean that biofuels shoud be rejected and their positive aspects ignored, but maybe this reality helps us to put them in perspective. To achieve true environmental benefits through the usage of biofuels there must first be a significant drop both in traffic volumes and overall fuel consumption. Second generation biofuels are coming, but serious questions about their availability and production capacities remain open. Therefore nothing can be taken for granted in this issue, expect the need for development.
Resumo:
Several cyanobacterial genera produce the hepatotoxins, microcystins. Microcystins are produced only in cells that have microcystin synthetase gene (mcy) clusters, which encode enzyme complexes involved in microcystin biosynthesis. Microcystin-producing and nonmicrocystin-producing genotypes of single cyanobacterial genus may occur simultaneously in situ. Previously, the effects of environmental factors on the growth and microcystin production of cyanobacteria have mainly been studied by means of isolated cyanobacteria cultures in the laboratory. Studies in the field have been difficult, owing to the lack of methods to identify and quantify the different genotypes. In this study, genus-specific microcystin synthetase E (mcyE) gene primers were designed and a method to identify and quantify the mcyE copy numbers was developed and used in situ. Microcystis and Anabaena mcyE genes were observed in two Finnish lakes. Microcystis appeared to be the most abundant microcystin producer in Lake Tuusulanjärvi and in one basin of Lake Hiidenvesi. Because the most potent microcystin-producing genus of a lake can be identified, it will be possible in the future to design genus-targeted strategies for lake restoration. Effects of P and N concentrations on the biomass of microcystin-producing and nonmicrocystin-producing Microcystis strains and an Anabaena strain were studied in cultures. P and N concentrations and their combined effect increased cyanobacterial biomass of all Microcystis strains. The biomass of microcystin-producing Microcystis was higher than that of nonmicrocystin-producing strains at high nutrient concentrations. The P concentration increased Anabaena biomass, but the effect of N concentration was statistically insignificant for growth yield, probably due to the ability of the genus to fix molecular N2. P and N concentrations and combined nutrients caused an increase in cellular microcystin concentrations of the Microcystis strain cultivated in chemostat cultures. Cyanobacteria are able to hydrolyse nutrients from organic matter through extracellular enzyme activities. Leucine aminopeptidase (LAP) activity was observed in an axenic N2-fixing Anabaena strain grown in batch cultures. The P concentration caused a statistically significant increase in LAP activity, whereas the effect of N concentration was insignificant. The highest LAP activities were observed in the most eutrophic basins of Lake Hiidenvesi. LAP activity probably originated mostly from attached heterotrophic bacteria and less from cyanobacteria.
Resumo:
Historical sediment nutrient concentrations and heavy-metal distributions were studied in five embayments in the Gulf of Finland and an adjacent lake. The main objective of the study was to examine the response of these water bodies to temporal changes in human activities. Sediment cores were collected from the sites and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss on ignition (LOI), grain size, Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the geochemical variables and to compare trends between the different sites. The links between the catchment land use and sediment geochemical data were studied using a multivariate technique of redundancy analysis (RDA). Human activities produce marked geochemical variations in coastal sediments. These variations and signals are often challenging to interpret due to various sedimentological and post-depositional factors affecting the sediment profiles. In general, the sites studied here show significant upcore increases in sedimentation rates, TP and TN concentrations. Also Cu, which is considered to be a good indicator of anthropogenic influence, showed clear increases from 1850 towards the top part of the cores. Based on the RDA-analysis, in the least disturbed embayments with high forest cover, the sediments are dominated by lithogenic indicators Fe, K, Al and Mg. In embayments close to urban settlement, the sediments have high Cu concentrations and a high sediment Fe/Mn ratio. This study suggests that sediment accumulation rates vary significantly from site to site and that the overall sedimentation can be linked to the geomorphology and basin bathymetry, which appear to be the major factors governing sedimentation rates; i.e. a high sediment accumulation rate is not characteristic either to urban or to rural sites. The geochemical trends are strongly site specific and depend on the local geochemical background, basin characteristics and anthropogenic metal and nutrient loading. Of the studied geochemical indicators, OP shows the least monotonic trends in all studied sites. When compared to other available data, OP seems to be the most reliable geochemical indicator describing the trophic development of the study sites, whereas Cu and Zn appear to be good indicators for anthropogenic influence. As sedimentation environments, estuarine and marine sites are more complex than lacustrine basins with multiple sources of sediment input and more energetic conditions in the former. The crucial differences between lacustrine and estuarine/coastal sedimentation environments are mostly related to Fe. P sedimentation is largely governed by Fe redox-reactions in estuarine environments. In freshwaters, presence of Fe is clearly linked to the sedimentation of other lithogenic metals, and therefore P sedimentation and preservation has a more direct linkage to organic matter sedimentation.