20 resultados para VAPOR-LIQUID-EQUILIBRIUM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is represented by n-nonane and n-propanol. Their thermophysical properties are well established, and experiments on these substances have been performed. The experimental data of binary homogeneous and heterogeneous nucleation have been compared with the theoretical predictions. Although the n-nonane - n-propanol mixture is far from being ideal, CNT seems to behave fairly well, especially when calculating the cluster composition. In the case of heterogeneous nucleation, it has been found that better characterization of the substrate - liquid interaction by means of line tension and microscopic contact angle leads to a significant improvement of the CNT prediction. Unfortunately, this can not be achieved without well defined experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.