17 resultados para Transcription génique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circulatory system consists of two vessel types, which act in concert but significantly differ from each other in several structural and functional aspects as well as in mechanisms governing their development. The blood vasculature transports oxygen, nutrients and cells to tissues whereas the lymphatic vessels collect extravasated fluid, macromolecules and cells of the immune system and return them back to the blood circulation. Understanding the molecular mechanisms behind the developmental and functional regulation of the lymphatic system long lagged behind that of the blood vasculature. Identification of several markers specific for the lymphatic endothelium, and the discovery of key factors controlling the development and function of the lymphatic vessels have greatly facilitated research in lymphatic biology over the past few years. Recognition of the crucial importance of lymphatic vessels in certain pathological conditions, most importantly in tumor metastasis, lymphedema and inflammation, has increased interest in this vessel type, for so long overshadowed by its blood vascular cousin. VEGF-C (Vascular Endothelial Growth Factor C) and its receptor VEGFR-3 are essential for the development and maintenance of embryonic lymphatic vasculature. Furthermore, VEGF-C has been shown to be upregulated in many tumors and its expression found to positively correlate with lymphatic metastasis. Mutations in the transcription factor FOXC2 result in lymphedema-distichiasis (LD), which suggests a role for FOXC2 in the regulation of lymphatic development or function. This study was undertaken to obtain more information about the role of the VEGF-C/VEGFR-3 pathway and FOXC2 in regulating lymphatic development, growth, function and survival in physiological as well as in pathological conditions. We found that the silk-like carboxyterminal propeptide is not necessary for the lymphangiogenic activity of VEGF-C, but enhances it, and that the aminoterminal propeptide mediates binding of VEGF-C to the neuropilin-2 coreceptor, which we suggest to be involved in VEGF-C signalling via VEGFR-3. Furthermore, we found that overexpression of VEGF-C increases tumor lymphangiogenesis and intralymphatic tumor growth, both of which could be inhibited by a soluble form of VEGFR-3. These results suggest that blocking VEGFR-3 signalling could be used for prevention of lymphatic tumor metastasis. This might prove to be a safe treatment method for human cancer patients, since inhibition of VEGFR-3 activity had no effect on the normal lymphatic vasculature in adult mice, though it did lead to regression of lymphatic vessels in the postnatal period. Interestingly, in contrast to VEGF-C, which induces lymphangiogenesis already during embryonic development, we found that the related VEGF-D promotes lymphatic vessel growth only after birth. These results suggest, that the lymphatic vasculature undergoes postnatal maturation, which renders it independent of ligand induced VEGFR-3 signalling for survival but responsive to VEGF-D for growth. Finally, we show that FOXC2 is necessary for the later stages of lymphatic development by regulating the morphogenesis of lymphatic valves, as well as interactions of the lymphatic endothelium with vascular mural cells, in which it cooperates with VEGFR-3. Furthermore, our study indicates that the absence of lymphatic valves, abnormal association of lymphatic capillaries with mural cells and an increased amount of basement membrane underlie the pathogenesis of LD. These findings have given new insight into the mechanisms of normal lymphatic development, as well as into the pathogenesis of diseases involving the lymphatic vasculature. They also reveal new therapeutic targets for the prevention and treatment of tumor metastasis and lymphatic vascular failure in certain forms of lymphedema. Several interesting questions were posed that still need to be addressed. Most importantly, the mechanism of VEGF-C promoted tumor metastasis and the molecular nature of the postnatal lymphatic vessel maturation remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiosperms represent a huge diversity in floral structures. Thus, they provide an attractive target for comparative developmental genetics studies. Research on flower development has focused on few main model plants, and studies on these species have revealed the importance of transcription factors, such as MADS-box and TCP genes, for regulating the floral form. The MADS-box genes determine floral organ identities, whereas the TCP genes are known to regulate flower shape and the number of floral organs. In this study, I have concentrated on these two gene families and their role in regulating flower development in Gerbera hybrida, a species belonging to the large sunflower family (Asteraceae). The Gerbera inflorescence is comprised of hundreds of tightly clustered flowers that differ in their size, shape and function according to their position in the inflorescence. The presence of distinct flower types tells Gerbera apart from the common model species that bear only single kinds of flowers in their inflorescences. The marginally located ray flowers have large bilaterally symmetrical petals and non-functional stamens. The centrally located disc flowers are smaller, have less pronounced bilateral symmetry and carry functional stamens. Early stages of flower development were studied in Gerbera to understand the differentiation of flower types better. After morphological analysis, we compared gene expression between ray and disc flowers to reveal transcriptional differences in flower types. Interestingly, MADS-box genes showed differential expression, suggesting that they might take part in defining flower types by forming flower-type-specific regulatory complexes. Functional analysis of a CYCLOIDEA-like TCP gene GhCYC2 provided evidence that TCP transcription factors are involved in flower type differentiation in Gerbera. The expression of GhCYC2 is ray-flower-specific at early stages of development and activated only later in disc flowers. Overexpression of GhCYC2 in transgenic Gerbera-lines causes disc flowers to obtain ray-flower-like characters, such as elongated petals and disrupted stamen development. The expression pattern and transgenic phenotypes further suggest that GhCYC2 may shape ray flowers by promoting organ fusion. Cooperation of GhCYC2 with other Gerbera CYC-like TCP genes is most likely needed for proper flower type specification, and by this means for shaping the elaborate inflorescence structure. Gerbera flower development was also approached by characterizing B class MADS-box genes, which in the main model plants are known regulators of petal and stamen identity. The four Gerbera B class genes were phylogenetically grouped into three clades; GGLO1 into the PI/GLO clade, GDEF2 and GDEF3 into the euAP3 clade and GDEF1 into the TM6 clade. Putative orthologs for GDEF2 and GDEF3 were identified in other Asteraceae species, which suggests that they appeared through an Asteraceae-specific duplication. Functional analyses indicated that GGLO1 and GDEF2 perform conventional B-function as they determine petal and stamen identities. Our studies on GDEF1 represent the first functional analysis of a TM6-like gene outside the Solanaceae lineage and provide further evidence for the role of TM6 clade members in specifying stamen development. Overall, the Gerbera B class genes showed both commonalities and diversifications with the conventional B-function described in the main model plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.